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Abstract

Recent developments in computer vision techniques have markedly improved fire detec-

tion capabilities compared to conventional systems. This work introduces an innovative

methodology that integrates deep neural networks for identifying instances and regions

of fire, graph cuts, and color thresholding for a nuanced approach to fire segmentation.

The incorporation of fire segmentation masks facilitates precise analysis, providing valu-

able insights into fire origins and propagation to proactively prevent future incidents.

Our method, leveraging graph cuts segmentation with comprehensive color information,

demonstrates enhanced accuracy and detailed fire detection. The results illustrate a no-

table improvement in recall, maintaining competitive precision, thereby establishing an

efficient and effective fire detection framework.

Keywords: Fire detection; fire segmentation; image classification; graph cut; deep learn-

ing; color thresholding.



Resumo

Métodos recentes de visão computacional têm avançado significativamente em detecção

de incêndios em comparação com sistemas tradicionais. Este trabalho apresenta uma

metodologia inovadora que integra redes neurais profundas para identificar instâncias e

regiões de incêndio, cortes de grafos e limiarização de cores para uma abordagem de-

talhada na segmentação de incêndios. A incorporação de máscaras de segmentação de

incêndios facilita uma análise precisa, fornecendo informações valiosas sobre a origem e

propagação de incêndios para prevenir futuros incidentes de maneira proativa. O método

proposto, aproveitando a segmentação por cortes de grafo com informações abrangentes

de cor, demonstra uma precisão aprimorada e uma detecção de incêndios detalhada. Os

resultados ilustram uma melhoria notável na taxa de verdadeiros positivos, mantendo uma

precisão competitiva, estabelecendo assim um framework eficiente e eficaz para detecção

de incêndios.

Palavras-chave: Detecção de fogo; segmentação de fogo; classificação de imagens; corte

de grafo; aprendizagem profunda; limiar de cor.
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“Chaos breeds life, where order breeds habit.”
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1 Introduction

1.1 Problem Overview and Context

Fire detection is a crucial aspect of fire safety in various environments, including homes,

public buildings, industrial facilities, and forests. Traditional fire detection systems rely

on sensors that detect smoke, heat, or flames to alert occupants about a potential fire.

However, these systems can be limited in their accuracy and may produce false alarms.

With the advent of neural networks and other forms of artificial intelligence (AI), there

is a growing interest in developing more effective fire detection systems. This chapter

provides the motivation for the development of new fire detection methods, outlines the

main challenges associated with the problem, highlights the relevance of the work, and

outlines the objectives.

Fire detection and surveillance systems have significantly evolved over time, be-

coming more advanced and efficient in preventing the spread of fires. These systems have

become integral parts of many buildings, factories, and public places, providing early

alerts and protection against potentially deadly fires. Analyzing the spread of fires is a

crucial aspect of fire detection and surveillance systems, as it enables more efficient and

effective fire prevention and control.

In recent years, surveillance systems have become increasingly interconnected

and intelligent, utilizing a variety of technologies such as AI and the Internet of Things

(IoT). These systems use AI algorithms to analyze real-time video data from cameras,

identifying and flagging unusual or suspicious behaviors. On top of that, they can utilize

not only real-time detection but also image analysis of sets of images to identify patterns

of fire propagation, potential sources of fires, and vulnerable areas. By leveraging this

information, necessary measures can be taken to prevent losses.

As a pivotal component of these advancements, AI refers to the simulation of

intelligence in machines that are programmed to perform tasks that typically require

intelligence, such as visual perception, speech recognition, decision-making, and natural
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language processing.

While AI broadly encompasses the simulation of human intelligence in machines,

its subfield, Machine Learning (ML), takes a specific approach. ML allows systems to

learn and improve automatically from experience without being explicitly programmed.

This involves the use of statistical and mathematical algorithms to analyze data, recognize

patterns, and make predictions.

Additionally, a specialized form of ML known as deep learning (DL) has gained

prominence. DL involves the use of deep neural networks (DNNs), composed of multiple

layers of interconnected nodes, to analyze complex data. DL algorithms can be used for

tasks such as image and speech recognition, natural language processing, and autonomous

decision-making. However, these networks require a large amount of data to learn complex

patterns and become robust to a wide variation of new data.

As the demand for efficient and accurate monitoring solutions increases, intelli-

gent models like neural networks are gaining popularity for automating tasks traditionally

carried out by humans. Thus, systems such as traffic monitoring and surveillance have

integrated with these models to better meet the demand, as vast amounts of data come

from security cameras and are difficult to be meticulously monitored by humans.

Intelligent surveillance systems can encompass a variety of features, including

motion detection, facial recognition, object tracking, and automatic alerting. They can

be applied to various applications, from traffic monitoring to detecting potential security

threats in public spaces. One of the main benefits of using intelligent systems is the

ability to quickly and accurately analyze large volumes of video data. Using AI and ML

algorithms, these systems can detect patterns and anomalies that might go unnoticed

by human operators. Additionally, they also enable reducing the workload of human

operators, freeing them to focus on more complex tasks.

Moreover, analyzing how fires propagate is a critical aspect of fire detection and

surveillance systems, as it enables the development of more effective strategies for fire

prevention and control. For instance, understanding how a fire spreads allows for designing

buildings and structures to avoid such accidents. Furthermore, analyzing fire propagation

can aid emergency services in responding more effectively to fire emergencies by rapidly
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identifying the fire’s origin, assessing its severity, and mobilizing appropriate resources to

contain and extinguish it. By gaining a clear understanding of fire spread, it is possible

to minimize the risk to human life and property, as well as reduce the damages caused by

fires.

In the context of emergency management, natural disasters, accidents, and emer-

gencies occur frequently and have severe impacts. To prevent or mitigate these issues,

various sensors, alarms, and security systems are implemented. Fires are incidents that

can spread rapidly and pose a significant threat to lives and properties, thus addressing

them in their early stages is crucial. According to a natural disaster report (RELIEFWEB,

2021), there were 19 forest fires in 2021, resulting in the loss of 128 human lives and 9.2

billion dollars. Additionally, the U.S. Fire Administration (USFA) states that there were

1,291,500 fires, 3,704 deaths, 16,600 injuries, and 14.8 billion in losses in the year 2019 in

the United States (U.S. FIRE ADMINISTRATION, 2022). Festag (2016) investigated the

rate of false alarms from sensitive sensors in Germany, which averages 86.07% per year,

highlighting the inaccuracy of such systems. This underscores the need for autonomous

systems to detect fires more efficiently so that firefighters can be dispatched promptly.

Traditional fire alarms are widely used to prevent significant losses. However,

these solutions are based on optical and infrared sensors, requiring them to be placed

near the fire, which is challenging in open areas. Furthermore, not all fires occur when

someone is nearby, thus human monitoring is recommended to confirm the fire and assess

its severity. Additionally, these systems are expensive to install and maintain and have a

high false alarm rate.

As an alternative, other vision-based sensors can provide more information, such

as the fire’s location and severity. For instance, fire segmentation can offer the fire’s size

and location, enabling the assessment of growth rate through the analysis of a sequence

of images.

A non-real-time fire detection and segmentation method can also be valuable for

analyzing how fire spreads across a set of images. Analyzing a sequence of fire images can

provide valuable insights into fire behavior and the effectiveness of firefighting efforts.

The problem addressed by this work involves not only identifying the presence of
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fires in images but also locating the fire through pixel-level clustering.

Delving into the specifics, image segmentation emerges as a crucial aspect of

the solution. Segmentation is one of the most well-known and longstanding problems in

computer vision (CV), involving grouping pixels that belong to the same class or exhibit

similarity in a given context (SZELISKI, 2011). The result achieved in this problem,

where objects in the image are divided into classes, is commonly referred to as a mask.

Figure 1.1 illustrates an example of an annotated image for semantic segmentation, where

each object class is color-coded.

Figure 1.1: Example of semantic segmentation annotation taken from the Cityscapes
dataset (CORDTS et al., 2016).

Therefore, segmentation techniques can be applied to the fire detection problem,

providing much more information than just image classification with or without fire. The

problem in fire detection can be described as separating fire pixels from non-fire pixels in

a series of images. Once fire pixels are segmented, it is possible to track the progression

of fire over time by analyzing changes in fire pixels from one image to the next. This

approach can be particularly useful for understanding how a fire spreads across a large

area or behaves under different conditions. By analyzing a series of images captured over

time, patterns in fire spread can be identified, and factors like wind, temperature, and

fuel load can be assessed for their impact on fire behavior.

Image processing techniques for segmentation range from classical algorithms like

thresholding and edge detection to deep neural network models for semantic segmentation.

However, as fire is not an easily distinguishable object for algorithms, the task requires

more complex methods that can leverage color and geometry information. Moreover,
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the fact that the color of fire can be present in a vast variety of other objects makes

the problem even more challenging. In essence, across the entire color space, one needs

to identify the most common fire colors while differentiating them from any other object

sharing similar characteristics. As shown in Figure 1.2, the goal is to obtain a fine-grained

mask that precisely segments the fire.

(a) Input image. (b) Ground truth.

Figure 1.2: Example of binary segmentation for fire taken from our test set (CHINO et
al., 2015).

1.2 Motivation

Fires pose a significant threat to both human lives and properties, and swiftly and accu-

rately detecting and mitigating them is crucial. The state of the art lacks methods with

balanced classification, meaning that achieving good metrics for both the True Positive

Rate (TPR) and the False Positive Rate (FPR) remains a challenge. Furthermore, the

best results are often achieved by identifying what is not fire, the negative and majority

class in the images (CHINO et al., 2015). For the fire detection problem, it is more critical

not to miss fire cases, meaning false alarms are less detrimental than undetected fires. As

a result, there is a pressing need for new fire detection and segmentation methods capable

of better classifying what constitutes fire — the positive and most important class — and

maintaining balanced results.

The benefits of such a system can be immense. In the short term, it can assist first

responders in swiftly and accurately pinpointing the location and extent of fires, enabling

them to respond more effectively and potentially save lives and properties. In the long

term, it can enable better fire prevention strategies, offering more precise data about fire
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patterns and behaviors when utilized to analyze sets of images and make data-driven

decisions.

In addition, accurate fire detection and segmentation can have broader societal

implications. For instance, it can aid in the development of more effective climate models

by providing data about the frequency and intensity of fires in different regions. It can

also assist in identifying high-risk fire areas, allowing relevant authorities to take proactive

measures to mitigate the risk.

Overall, there is a clear need for new and improved fire detection and segmenta-

tion methods, and the potential benefits of such a system are significant. With the power

of DL and CV techniques, it might be possible to develop a more accurate and reliable

system for identifying and tracking fires, with wide-ranging implications for emergency

response, fire prevention, and societal well-being. While this method may not be a real-

time application, it can provide valuable information for analysis and informing future

strategies for dealing with fires. By understanding how fires spread and behave, it is

possible to develop more effective fire prevention and suppression strategies, reducing the

risk of loss of lives and properties due to fire.

1.3 Objectives

The main objective of this work is to develop a novel method for the balanced detection

and segmentation of fire in images. The aim is to create a model capable of discerning

both fire and non-fire areas, while having a higher emphasis to the positive class (fire).

The exclusion of scenes without any detected fire prevents unnecessary processing and

allows a more effective segmentation.

Subsequently, the method will be evaluated using the same dataset and image

segmentation metrics employed in the investigations of related works. The research scope

includes evaluating the use of deep neural networks (DNNs), CV methods, and ML to

generate fire segmentation masks.

Hence, the objectives of this study include the following steps:

• Investigating the use of state-of-the-art neural networks for classification of fire
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images and regions;

• Exploring various datasets utilized in related works;

• Developing a method for a patch-based segmentation, identifying fire regions in

images;

• Experimenting with the use of a classification model prior to the segmentation stage,

and assessing its impact on final results;

• Establishing a color range based on color distribution in the training set for con-

structing the color classifier;

• Examining color thresholding in both RGB and HSV color spaces;

• Experimenting with the use of graph cuts and their energy functions;

• Assessing final results by comparison with state-of-the-art methods for the given

problem.

1.4 Contributions

The primary contributions of this study lie in advancing the domain of fire detection

through an innovative methodology harnessing the capabilities of graph cuts for refined

fire segmentation. The outcomes not only showcase the highest TPR when compared to

contemporary state-of-the-art methods but also manifest enhancements in FPR, precision,

and F1-score in contrast to our prior research. This progress underscores the efficacy and

promise of our approach in precisely detecting fires, reducing false alarms, and elevating

overall performance. The significant improvements achieved resulted in the publication in

two renowned conferences (PEREIRA; VIEIRA; VILLELA, 2022; PEREIRA; VIEIRA;

VILLELA, 2023).
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1.5 Organization

This work is organized as follows: Chapter 2 describes the fundamental concepts applied in

the proposed approach. Chapter 3 summarizes how related works have addressed the fire

detection problem. Chapter 4 details our method, including the integration of deep neural

networks, graph cuts, and color thresholding. Chapter 5 describes the datasets used, the

experimental setup, and presents the results of our experiments. Finally, Chapter 6

concludes the work and outlines future research directions.
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2 Theoretical Framework

This chapter provides the necessary concepts to understand the CV techniques and DL

models used in developing the method proposed in this work. Throughout the research,

the use of each method and combinations among them will be evaluated. Firstly, the

functioning of the k-means algorithm is presented, which is widely used for clustering

tasks and also applicable for identifying clusters in images. Following that, the interpre-

tation of images as graphs and the utilization of the classic graph cut method for object

segmentation based on color and geometry similarity are detailed. Subsequently, the field

of DL is introduced, discussing neural networks, their training, and potential training

issues. Convolutional neural network (CNN) models, specialized neural networks for CV

problems, are then described. Lastly, the emerging architecture in the natural language

processing (NLP) field, also recently employed in CV, the transformers architecture, is

discussed.

All these concepts are of paramount importance for the development of this work.

They are directly related to CV problems, particularly image segmentation.

2.1 K-means

K-means is an unsupervised clustering algorithm used to partition a given dataset into k

clusters, where k is the number of clusters specified by the user. It functions iteratively by

assigning each data point to the cluster whose centroid is closest to it and then updating

the centroid of each cluster based on the assigned data points (SZELISKI, 2011). The

process continues until the centroids no longer move significantly or a maximum number

of iterations is reached.

In the context of image segmentation, k-means can be employed to group similar

pixels in an image into k clusters, where each cluster represents a different region in

the image. Once clustering is complete, the resulting clusters can be used to segment

the image by assigning each pixel to the corresponding cluster. This can be useful in
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applications where regions containing the object of interest in an image can be separated

from the background. However, k-means does not always produce the best segmentation

results, as it assumes well-separated clusters. Figure 2.1 presents an example of color

quantization using k-means.

Figure 2.1: K-means quantization example with k varying from 2 to 8. Source: (OPENCV,
n.d.).

2.2 Graph Cut

Graph cut is a widely used technique in computer vision to solve optimization problems

that can be formulated as graph problems. In the context of image segmentation, graph

cuts can partition an image into foreground and background regions, minimizing an energy

function (SZELISKI, 2011).

This energy function represents the cost associated with labeling each node in

a graph. The energy function is typically defined as a combination of two terms: the

term measuring similarity between input data and labels, and the smoothness term that

encourages neighboring nodes in the graph to have similar labels. The goal of graph cuts

is to find the labeling that minimizes the energy function, which can be formulated as

an optimization problem and solved using efficient algorithms such as the maximum flow

and minimum cut algorithms.
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The maximum flow and minimum cut problem is straightforward: it involves

sending the maximum possible flow between two specified nodes in a network (source

and sink) without exceeding edge capacities (AHUJA; MAGNANTI; ORLIN, 1993). Al-

gorithms to solve the problem model the network as a graph, with edges representing

network connection capacities. The algorithm then tries to find the cut in the graph that

minimizes the capacities of the edges crossing the cut, which is equivalent to finding the

maximum flow.

The core idea behind graph cuts is to convert the image segmentation problem

into a graph problem, where nodes represent image pixels and edges represent relationships

between neighboring pixels. The weight of an edge represents the dissimilarity between

the two connected nodes.

The segmentation problem is then formulated as a minimum cut problem in the

graph, where the cut separates nodes into two sets of regions: the object of interest and

the background. Figure 2.2 illustrates the graph cut process.

Figure 2.2: Graph cut applied in image segmentation (BOYKOV; JOLLY, 2001): (a)
the graph is constructed from image pixels; (b) the image is partitioned based on the
minimum cut. Source: Szeliski (2011).

2.3 Deep Learning

DL is a subfield of ML that involves the utilization of deep neural networks to learn

complex and nonlinear mappings between inputs and outputs. Neural networks are com-
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putational models inspired by the human brain and consist of multiple layers of inter-

connected processing units called neurons (AGGARWAL, 2018). These models are par-

ticularly well-suited for handling complex and high-dimensional data, where traditional

algorithms might struggle to identify patterns or make accurate predictions. They are

also employed in tasks that require learning from large datasets, as they can automatically

extract features and learn representations that enhance their performance.

Neural networks function by taking an input vector and passing it through a

series of nonlinear transformations, with the output of each layer serving as the input

to the next layer. The final output of the neural network is generated by the output

layer, which typically employs a nonlinear activation function that maps the output of

the final hidden layer to the desired output space. Such networks are commonly known

as feedforward neural networks or multilayer perceptrons (MLPs), as data flows in only

one direction, from the input layer through the hidden layers to the output layer. The

term “feedforward” indicates that input data is fed into the network in a single pass

without any feedback connections. Therefore, the goal of a feedforward network is to

approximate a function f that maps an input x to an output value (GOODFELLOW;

BENGIO; COURVILLE, 2016). Figure 2.3 depicts the architecture of a basic single-

hidden-layer neural network. The operations illustrated in the output neuron, including

weighted sum, bias addition, and activation, are likewise performed in all neurons ai

within the hidden layer.

Bias is a scalar value added to the weighted sum of a neuron’s inputs. It is an

additional parameter in the neural network that enables the model to shift its output in

a specific direction. The bias term assists in shifting the activation function of a neuron

in either the negative or positive direction. Thus, the following equation describes the

computation performed in each neuron:

y =
n∑

i=1

wixi + b, (2.1)

where wi represents the weight associated with the i-th input xi, and b is the bias. A

subsequent activation function is applied, such as the sigmoid or Rectified Linear Unit

(ReLU), to capture the data’s nonlinearity. Unlike sigmoid and other slower computing
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Figure 2.3: Architecture of a single-hidden-layer neural network.

functions, the ReLU activation function is simple and has proven effective in training deep

neural networks (LECUN; BENGIO; HINTON, 2015). The ReLU function is defined as:

f(x) = max(0, x), (2.2)

where x is the input to the function. This function returns zero for negative inputs and

the input value itself for non-negative inputs. One of the main advantages of the ReLU

function is its computational efficiency.

The process of training a neural network involves feeding it with a dataset com-

prising inputs and expected labels for each entry, and adjusting the neuron weights to

minimize the difference between the predicted and actual output. Learning occurs by

adapting the network weights according to a loss function, which is achieved using a

technique called backpropagation (RUMELHART; HINTON; WILLIAMS, 1986). Back-

propagation utilizes gradient descent to minimize the loss in its classical version. The al-

gorithm calculates the gradient of the loss function with respect to the network’s weights

and biases and uses it to update the parameters. The learning rate is a hyperparameter

used in backpropagation, controlling the extent to which weights are updated in the gra-

dient direction. A very high learning rate can cause the optimization process to diverge,
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while a very low learning rate can lead to slow optimization and being trapped in a local

minimum. Therefore, finding the ideal learning rate is crucial for effectively training a

neural network. The use of adaptive learning rates is a popular practice to adjust the

learning rate during training.

The primary challenge in ML is to create models that generalize well, meaning

they perform well on new datasets (GOODFELLOW; BENGIO; COURVILLE, 2016).

However, during the training process, it is important to be aware of the possibility of

overfitting or underfitting the data. Overfitting occurs when the neural network is too

complex for the provided data or is trained too well to the point that it starts memorizing

training examples instead of learning patterns in the data, leading to poor generalization

to new data. On the other hand, underfitting occurs when the neural network is not

complex enough or has not been trained sufficiently to capture patterns in the data,

resulting in low performance on both training and test data.

To address overfitting, regularization techniques such as L1 and L2 regularization,

dropout (SRIVASTAVA et al., 2014), and data augmentation can be used to constrain

the network weights and prevent it from memorizing noise in the training data. Dropout,

for example, randomly selects and drops some neurons in a network layer during each

training iteration. This forces the remaining neurons to learn more robust and generalized

representations.

Conversely, the neural network can be made more complex by increasing the

number of layers or neurons in the network or changing activation functions to capture

more complex patterns in the data to combat underfitting. However, it is important to

avoid making the network overly complex, as it may lead to overfitting. Appropriate

validation techniques, such as cross-validation, can help identify and address overfitting

and underfitting.

A widely applied function at the output of neural networks is the softmax, often

used in classification tasks to convert output values from the previous layer into proba-

bilities for multiple possible classes (AGGARWAL, 2018). This probability distribution

can be used to determine the most likely class for a given input. The softmax function is
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defined as follows:

softmax(xi) =
exi∑K
j=1 e

xj

, (2.3)

where xi is the input to the i-th neuron in the output layer, K is the number of classes,

and e is the base of the natural logarithm. The denominator of the softmax function is the

sum of the exponential values of all inputs, ensuring that the output is a valid probability

distribution with values between 0 and 1 that sum to 1. The fact that the output of

the softmax function is a probability is valuable, as it allows understanding the neural

network certainty level in its decisions (NIELSEN, 2015). Consequently, this probability

can be utilized to evaluate the network using different thresholds to determine its output,

i.e., defining from which probability the model’s response for a specific class is accepted.

This is useful for enhancing a model’s predictions when it excels for a specific class and

has not captured the pattern of others as effectively.

2.4 Convolutional Neural Networks

DL has become a popular technique for CV tasks such as image classification, object de-

tection, and segmentation due to its ability to automatically learn complex visual features

and patterns from vast amounts of data (LECUN; BENGIO; HINTON, 2015). Convolu-

tional Neural Networks (CNNs) are a type of neural network designed specifically for CV

tasks (GOODFELLOW; BENGIO; COURVILLE, 2016) and are increasingly prominent

in the state of the art. These networks have revolutionized the field of CV, enabling accu-

rate and efficient image classification, object detection, and segmentation. The distinctive

component of CNNs is the convolutional layers, which perform the convolution operation

on input data to extract features.

Convolution is a mathematical operation involving sliding a small window (re-

ferred to as a kernel or filter) over the input data, multiplying the values in the window

by corresponding values in the filter, and summing the results (SZELISKI, 2011). The

output of this operation is a single value representing the degree of similarity between

the input data and the filter. By applying this operation to different regions of the input

data, a feature map that captures various aspects of the input image can be generated.
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Figure 2.4 demonstrates the convolution operation, with the blue pixels indicating the

neighborhood in which the filter is applied in this step, generating the green pixel.

40 61 103 123 127 131 141 130

43 66 87 123 125 128 140 131

45 65 88 118 121 123 138 145

45 60 79 119 129 135 142 133

49 59 68 87 115 127 135 134

48 67 58 77 96 114 121 133

52 52 57 65 69 95 109 132

53 51 55 58 66 88 99 111

0.1 0.1 0.1

0.1 0.2 0.1

0.1 0.1 0.1

66 92 114 124 130 135

64 89 111 124 130 135

62 82 104 120 130 135

59 74 92 111 124 131

58 65 77 94 110 122

54 60 67 80 95 111

* =

Figure 2.4: The image on the right is obtained by performing convolution of the filter
over the image on the left.

Convolutive layers in CNNs apply these filters to input data throughout the

network (GOODFELLOW; BENGIO; COURVILLE, 2016), generating feature maps that

capture different types of features. These feature maps are passed through activation

functions and optionally through pooling layers to reduce sample and data dimensionality.

The values filling the filters in the convolution operations are learned by the network

during training, allowing it to decide on the best values for certain features across its

layers. Figure 2.5 presents the architecture of LeNet-5 (LECUN et al., 1998), the first

proposed CNN.

Convolution Pooling Convolution Pooling

Fully connected layer

Output

Input

feature maps
feature maps

feature maps feature maps

Figure 2.5: General architecture example of a CNN.

Pooling in CNNs is an operation for downsampling that reduces the spatial di-

mensions (height and width) of feature maps produced by convolutional layers and is a

technique used in most CNNs (GOODFELLOW; BENGIO; COURVILLE, 2016). It is

typically applied after the convolutional layer and the activation function. The pooling

operation works by dividing each feature map into non-overlapping regions, referred to as
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pooling regions or windows. Then, for each region, it calculates a single value representing

the maximum (max pooling) or the average (average pooling) of the values in that region.

This value is used to replace the entire window in the output feature map.

This operation is employed to reduce computational cost by decreasing the num-

ber of parameters and input data size, aiding in preventing overfitting. Furthermore, it

helps to extract the most relevant features from the data. Figure 2.6 illustrates the max

pooling operation.
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Figure 2.6: Max pooling operation applied with a 2x2 filter (window) and 2-pixel strides.

In a CNN, the initial layers learn low-level features such as edges and corners,

while deeper layers learn more complex features composed of these low-level features, such

as geometric shapes (AGGARWAL, 2018). This hierarchical structure allows CNNs to

effectively model complex relationships in input data and achieve high accuracy.

2.5 Transformers

Transformers (VASWANI et al., 2017) are a type of neural network architecture that

has revolutionized Natural Language Processing (NLP) tasks. At the heart of the trans-

former architecture lies the self-attention mechanism, which enables the model to attend

to different parts of the input sequence when generating an output. Self-attention cal-

culates a weighted sum of the input sequence at each position, with weights determined

by the similarity between the current position and all other positions in the sequence.

The self-attention mechanism is used in both the encoder and decoder components of the

transformer architecture. The encoder takes an input sequence of tokens (e.g., words)
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and generates a sequence of embeddings, each representing a different position in the in-

put. The decoder takes as input the encoder’s output and its own previous decoder block

outputs, producing an attention vector as output.

Each layer in the transformer consists of a multi-head self-attention mechanism

followed by a feedforward neural network. The multi-head attention mechanism allows

the model to attend to the input sequence in multiple ways, with each head learning a

different attention distribution over the sequence.

In addition to self-attention, the transformer also includes positional encoding,

used to provide the model with information about the position of each token in the

input sequence. This is crucial because the self-attention mechanism only considers token

similarity and not their positions.

This architecture has demonstrated remarkable performance across a wide range

of NLP tasks, including machine translation, text summarization, and language modeling.

Its success is largely attributed to its ability to capture intricate patterns within data.

Figure 2.7 illustrates the architecture of a transformer.

Figure 2.7: Architecture of a transformer model. Source: Vaswani et al. (2017).
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Transformer networks have excelled in NLP tasks and have sparked significant

interest in the field of computer vision. However, visual data demands specific network

architectures and training methods. Therefore, various authors have implemented their

versions of transformer models for vision tasks. Recently, the paper proposing the Vision

Transformer (ViT) model (DOSOVITSKIY et al., 2020) experimented with using a stan-

dard transformer with minimal modifications. To achieve this, they treated small patches

of the image as input tokens, flattened these patches, and added learned positional em-

beddings. Although ViT achieves remarkable results on recognition benchmarks when

pre-trained on the JFT-300M dataset (SUN et al., 2017), it still struggles with limited

data, falling behind CNNs in such cases. To overcome this issue, CoAtNet proposes a

combination of deep convolution and self-attention in an attempt to merge CNN’s gener-

alization with the Transformer model’s capabilities, as Transformers have shown a higher

ceiling. To this end, their architecture is divided into 5 stages, 1 Convolution block, 2

Mobile Inverted Residual Bottleneck Convolution (MBConv) blocks, and 2 transformer

blocks, as shown in Figure 2.8.

Figure 2.8: CoAtNet architecture overview. Source: Dai et al. (2021).

Unlike convolutional blocks, MBConv blocks (SANDLER et al., 2018) are based

on the idea of inverted residuals, involving the use of 1×1 convolutions to expand the

number of channels, followed by 3×3 depthwise convolutions, and then another 1×1

convolution to compress the output. This approach reduces the number of parameters

and computational complexity while maintaining high accuracy. Additionally, a residual

connection adds the input’s feature maps to the block’s output.

The idea of residual blocks (HE et al., 2015) stems from the difficulty of training

deep neural networks due to the vanishing gradient problem, where gradients can become

too small as they propagate through the network. Residual blocks were introduced to

address this by introducing shortcut connections that allow gradients to flow directly to
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earlier layers.

These shortcut connections enable residual blocks to learn a residual mapping,

or the difference between the input and the block’s output. This approach has proven

to ease the training of very deep neural networks, allowing them to learn more complex

functions without succumbing to the vanishing gradient problem.
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3 Related Work

Fire detection can be achieved in numerous ways, depending on design decisions that

define the main objectives. For instance, if the goal is simply to identify and report fires,

the problem may boil down to image classification or object detection. There is a wide

range of studies addressing the fire detection problem, and thus, the solutions proposed

by the authors also vary.

Researchers who began exploring the use of vision for fire detection focused their

studies on using motion and temporal features in videos (KIM; KIM; JEONG, 2014) or

investigated using color information through different color spaces (CELIK; DEMIREL,

2009; CHEN; WU; CHIOU, 2004).

More recent works have implemented Convolutional Neural Networks (CNNs)

in their approaches, utilizing them for image classification and fire localization. These

have shown promising results by combining the power of CNNs with superpixel cluster-

ing (THOMSON; BHOWMIK; BRECKON, 2020) or by extracting feature maps from

models to generate a mask (MUHAMMAD et al., 2019).

In this chapter, different methods used by state-of-the-art studies will be pre-

sented, as well as the proposed approaches that have served as baselines for various arti-

cles.

3.1 Video-Based Fire and Smoke Detection

Chen, Wu and Chiou (2004) propose a video-based approach. The algorithm begins by

segmenting moving regions from captured image sequences, which are considered candi-

dates for fire and smoke detection. Chromatic features are employed to extract fire pixels

and smoke pixels from these moving regions.

To differentiate fire and smoke pixels from corresponding false positive pixels,

dynamic features like growth and clutter are employed. These features validate the ex-

tracted fire and smoke pixels. It is important to note that if both fire and smoke pixels
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satisfy dynamic features, it indicates the presence of a real fire. However, if only fire pixels

satisfy these dynamic features, it may suggest the burning of certain fuels that generate

nearly transparent smoke, which is not captured by the video camera.

This method combines moving region segmentation, extraction of fire and smoke

pixels based on chromatic features, validation through dynamic features, and evalua-

tion of fire alarm trigger conditions to achieve early fire detection. Experimental results

demonstrate the effectiveness of the proposed algorithm.

Chino et al. (2015) constructed a dataset and conducted evaluations, comparing

various methods. When assessed using the dataset introduced by Chino et al. (2015), the

proposed method showed satisfactory results in terms of FPR. Nevertheless, it is crucial

to emphasize that the effectiveness of the method in detecting fires was limited.

One of the advantages of the method is its video-based approach, allowing the

detection of moving regions and identifying candidates for fire and smoke presence. Addi-

tionally, the use of chromatic features for extracting fire and smoke pixels is an interesting

strategy. The validation of these pixels through dynamic features such as growth and clut-

ter also contributes to real fire detection.

However, the method has a significant limitation. It is not effective for fire de-

tection, being more efficient in smoke detection. This could be attributed to the lack of

consideration for other relevant aspects of fire detection, such as temperature variation

and flame patterns. Additionally, the incapacity to capture nearly transparent smoke

generated by certain fuels is a drawback, as it can lead to false negatives and compromise

detection accuracy.

Despite these limitations, the method showed good results in terms of FPR when

evaluated on a specific dataset. This indicates that the algorithm might be useful in

specific contexts or scenarios where smoke detection is the primary concern. However, for

comprehensive fire detection, it is necessary to consider other approaches or supplement

the proposed method with other techniques that address the identified limitations.
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3.2 Stereo Vision-Based Fire Segmentation

Rossi, Akhloufi and Tison (2011) introduce in their paper a novel stereo vision-based

instrumentation system for fire segmentation in outdoor conditions. In the proposed ap-

proach, images are captured and processed using specialized algorithms. These algorithms

enable the modeling of fires in 3D and the extraction of geometric features such as vol-

ume, surface area, motion direction, and length. Experiments were conducted in outdoor

scenarios, and the obtained results showcase the effectiveness of the proposed system.

The method proposed extracts geometric features of fire from videos using stereo

vision. The method involves a clustering approach to locate the fire region. Initially, the

image is divided into two clusters based on the V channel of the YUV color space. The

cluster with the highest V value is identified as the fire cluster.

To classify pixels more accurately, a 3D Gaussian model is employed. This model

assigns a probability to each pixel based on its color and spatial position information.

Based on these probabilities, the method can differentiate between fire pixels and non-fire

pixels. It is important to note that this method was specifically developed for fires in

controlled environments and might have limitations in outdoor fire emergency situations,

as discussed by Chino et al. (2015).

When analyzing the results of Rossi, Akhloufi and Tison (2011) on the dataset

proposed by Chino et al. (2015), a slight improvement in TPR can be observed with the

application of the proposed method. However, it is crucial to emphasize that the results

still do not reach levels considered satisfactory.

A benefit of this method is the use of stereo vision, which enables the extraction

of geometric features of fire such as volume, surface area, motion direction, and length.

Furthermore, the method employs a 3D Gaussian model to classify pixels more accurately,

taking into account color and spatial position information. The results obtained from

experiments demonstrate the effectiveness of the proposed system.

Nevertheless, it is important to consider some limitations of the method. It

was specifically developed for fires in controlled environments, which means it might

not be as effective in outdoor fire emergency situations. Additionally, despite showing

an improvement in the detection rate compared to other methods, the results still fall
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short of levels considered satisfactory, as discussed by Chino et al. (2015). Therefore,

while the proposed method has its advantages, improvements are necessary to enhance

its robustness and applicability in different fire scenarios.

3.3 Clustering-Based Fire Detection

Rudz et al. (2013) proposed another clustering-based method. They calculate four clusters

using the Cb channel of the YCbCr color space. The one with the lowest Cb value

is classified as the fire region. Subsequently, false positive pixels are discarded using a

reference dataset. The method handles small and large regions differently: small regions

are compared with the average of a reference region, and large regions are compared with

the reference histogram. They execute this process for each color channel.

The results on the dataset from Chino et al. (2015) demonstrated an improvement

of over 20% in TPR. However, they still have not reached a significant level of TPR.

An upside to this strategy is that the method utilizes the Cb channel of the

YCbCr color space to identify fire regions, which can be effective in detecting fires under

specific lighting conditions. Additionally, the method handles small and large regions

differently, allowing for a more precise analysis of fire characteristics.

Even so, the method also has some problems. For instance, classifying the fire

region based on the lowest Cb value can lead to false positives in situations where other

elements in the scene possess similar Cb values. Furthermore, the discarding of false

positive pixels relies on the availability of a reference dataset, which may restrict its

applicability to specific scenarios where such data is available.

Another consideration is that the method performs the detection process for each

color channel separately, which can increase computational complexity and processing

time. Therefore, while the method presents interesting approaches for fire detection,

it is necessary to evaluate its effectiveness under different conditions and consider its

limitations for proper application.
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3.4 BoWFire: A Color and Texture-Based Fire De-

tection Method

The method proposed by Chino et al. (2015) consists of three steps: generating a seg-

mentation mask through a color classifier, generating a second mask through a texture

classifier, and finally, performing an intersection between the two produced masks.

The color classification step aims to differentiate fire regions from non-fire regions

based on color information. Color classification is performed in the YCbCr color space, as

it provides better discrimination for fire colors (CHINO et al., 2015). The process begins

by converting each pixel of the input image to the YCbCr color space. The pixel values

are represented as (Yi, Cbi, Cri), where Yi represents the luminance component and Cbi

and Cri represent the chrominance components.

A pixel color classification is then applied to each converted pixel using a training

set of colors and a Naive Bayes classifier. The color training set consists of labeled

examples of “fire” and “non-fire” pixels, which are used to train the color classifier.

If the color classifier categorizes a pixel as fire, the pixel is considered part of the

fire region and is used to construct the output mask. Otherwise, the pixel is discarded.

The use of a color classification step in the BoWFire method avoids the need for a large

number of parameters. By classifying each pixel individually, the method achieves a finer

granularity in its segmentation mask. However, this also results in false positives due to

the lack of consideration of neighborhood information.

The texture classification step aims to improve the accuracy of fire detection by

considering local image characteristics. Since different emergency situations can result in

various types of fire images, global features might not efficiently capture small fire regions.

Using the Simple Linear Iterative Clustering (SLIC) algorithm, the authors divide the

image into superpixels. Superpixels are image regions obtained by grouping pixels based

on their similarity in color, texture, or other image attributes. The goal of superpixel

segmentation is to divide an image into visually coherent and meaningful regions, reducing

the complexity of subsequent image processing tasks. For each superpixel, a feature

extraction process is applied to extract a feature vector, and finally, the k-NN algorithm
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with Manhattan distance classifies the found features, determining whether the superpixel

is a fire region or not.

If the feature classifier categorizes the superpixel as a fire region, all pixels be-

longing to the superpixel are considered part of the fire region and are used to construct

the output mask. Conversely, if the feature classifier does not categorize the superpixel

as a fire region, the pixels of that superpixel are discarded.

By considering local texture features, the BoWFire method efficiently captures

specific patterns related to fire regions, enhancing the accuracy of fire detection.

A positive aspect of this method is the color classification step, which uses the

YCbCr color space to discriminate fire regions from non-fire regions based on color infor-

mation. This allows for more accurate detection, as fire colors are better discriminated

in this color space. Furthermore, color classification is carried out individually on each

pixel, providing a finer granularity in the segmentation mask.

Another positive aspect is the texture classification step, which aims to improve

fire detection by considering local image characteristics. The use of superpixels, obtained

through the SLIC algorithm, allows for pixel grouping based on color and texture simi-

larity, capturing specific patterns related to fire regions. This increases the accuracy of

fire detection, especially in situations where global image features would not be effective.

Nonetheless, it is important to highlight that the BoWFire method also relies

on accurate superpixel segmentation and correct texture feature extraction. If there are

inaccuracies in these steps, fire detection can be compromised.

The results obtained in this study demonstrated a significant improvement com-

pared to previous works. Both the isolated color classification approach and the combi-

nation of texture and color showed superior performance. These results underscore the

effectiveness of the proposed method compared to previous approaches.
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3.5 Deep Learning-Based Fire Detection and Local-

ization with CNNs

In more recent works, with the advent of the field of DL, new approaches have emerged

proposing the use of Convolutional Neural Networks (CNNs) for fire detection. Muham-

mad et al. (2019) explore in their work the detection and localization of fires through

networks based on SqueezeNet (IANDOLA et al., 2016) and AlexNet (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012). The model is trained to detect fires in various scenar-

ios, including indoor and outdoor environments, without the need for pre-processing or

selecting more relevant features in the images. The trained model assigns a label to input

images based on probability scores calculated by the network.

If the network does not detect a fire in the image, the image is simply discarded.

Otherwise, the fire localization step is carried out, and the segmentation mask is produced.

To locate the fire in an image, the process involves additional processing. The feature maps

from different layers in the CNN are analyzed to identify maps sensitive to fire regions.

These maps are combined and binarized to segment the fire, resulting in a binary mask

that indicates the fire region.

The segmented fire region is then used for two purposes. Firstly, the severity

level or degree of burning of the fire is determined based on the number of pixels in the

segmented region. Secondly, the Zone of Influence (ZOI) is found by subtracting the

segmented fire regions from the original input image. The resulting ZOI image is passed

through the original SqueezeNet model, which predicts its label from 1000 objects. This

information helps identify the situation associated with the fire, such as a fire in a house,

forest, or vehicle. The severity of the fire and situational information can be reported to

the fire department for appropriate actions.

Overall, the proposed method employs a deep CNN to detect and localize fires in

images, eliminating the need for manual pre-processing or feature engineering. It provides

fire detection and localization, as well as additional information about the severity and

situation of the fire. The method outperformed the state of the art at the time, showing

better precision and recall results while maintaining low computational cost.
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On one hand, the use of Convolutional Neural Networks (CNNs) allows the model

to automatically learn relevant features for fire detection. This facilitates the application

of the method in different scenarios, both indoors and outdoors.

On the other hand, the fire localization step involves additional processing. An-

alyzing the feature maps from different CNN layers is necessary to identify fire-sensitive

regions. While this process can provide accurate fire segmentation, it adds computational

complexity to the method.

3.6 Compact CNNs and SLIC-Based Clustering for

Fire Detection and Localization in Video Frames

Similarly, Thomson, Bhowmik and Breckon (2020) investigate the use of more compact

versions of NasNet-A-Mobile (ZOPH et al., 2018) and ShuffleNetV2 (MA et al., 2018)

for detecting and localizing fires in images extracted from video frames. The proposed

CNNs are applied to find frames containing fires. From the frames classified as containing

fires, an iterative clustering is performed using the SLIC algorithm. Similar to the work

of Chino et al. (2015), the superpixels generated by SLIC are also classified by Thomson,

Bhowmik and Breckon (2020) to identify fire regions, but they propose this classification

through their CNN models. Good results were obtained on their image dataset with

these simplified networks. However, the work only evaluated the networks’ performance

for image classification and did not produce segmentation masks.

One of the main advantages of the proposed method is the investigation of using

compact versions of CNNs, such as NasNet-A-Mobile and ShuffleNetV2, to detect and

localize fires in images from video frames. These more compact networks might be more

efficient in terms of computational resource utilization, allowing for faster fire detection

and localization.

Another positive aspect is the application of CNNs to find frames containing fires.

This helps reduce processing in areas of the image that are not relevant to the specific

problem, saving time and computational resources.

However, despite the promising nature of employing the SLIC algorithm for itera-
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tive clustering of frames identified as fire-containing, there is potential for further analysis.

Evaluating the effectiveness of this segmentation method across diverse datasets could pro-

vide valuable insights into its segmentation capabilities. A more thorough assessment of

the segmentation accuracy achieved by SLIC, especially in comparison to alternative fire

segmentation methods, would be crucial.

3.7 Fire Detection with DeepLabV3 Semantic Seg-

mentation

Mĺıch et al. (2020) compiled a dataset with polygon annotations and examined the per-

formance of the DeepLabV3 semantic segmentation architecture (CHEN et al., 2017) to

address the presented problem. In creating the dataset, the authors focused on including

a substantial number of challenging images from the negative class (“non-fire”) to ensure

the network’s robustness across diverse situations. This method demonstrated impressive

enhancements in the FPR metric compared to other state-of-the-art works.

On a positive note, the authors curated a comprehensive dataset with polygon

annotations, enabling a precise and detailed evaluation of the DeepLabV3 semantic seg-

mentation model’s performance (CHEN et al., 2017). Furthermore, their emphasis on

incorporating a substantial number of challenging negative class images into the dataset

aims to bolster the model’s resilience in various and demanding scenarios.

Conversely, it is crucial to consider certain limitations. While the model achieved

remarkable improvements in the FPR metric, its performance needs assessment across

other relevant metrics such as the TPR.

Despite the mentioned limitations, the proposed method represents a substantial

advancement in the field of fire detection, leveraging a well-established semantic seg-

mentation architecture and constructing a comprehensive and challenging dataset. With

improved FPR and a robust approach, this method holds the potential to contribute to en-

hancing the safety and efficiency of fire detection systems. However, further research and

comprehensive evaluations are required to assess its overall performance and applicability

in real-world scenarios.
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4 Proposed Method

We introduce the proposed architecture depicted in Figure 4.1, where boxes with a blue

marker share the same architecture. This method encompasses a prior classifier, a patch

classifier dedicated to locating fire regions within an image, and employs graph cuts and a

color thresholding process to enhance the precision of the fire shape in the segmentation.
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Segmentation stage
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Figure 4.1: General architecture of the proposed model for fire detection and segmenta-
tion.

The prior classifier’s role is to classify images as containing fire or not, thereby by-

passing negative images in the segmentation stage. The performance of the prior classifier

is crucial to the pipeline, as accurately identifying and excluding non-fire images signifi-

cantly impacts overall results. If fire is detected in an image by this model, it proceeds

to the segmentation stage. Here, a segmentation mask is produced by both the patch

classifier and the graph cuts and color thresholding. The mask generated by the patch

classifier is derived by classifying regions, or patches, of 50 pixels with a 25-pixel step

increment, where the positive classification prevails in overlapping areas. Consequently,

this mask provides a coarser segmentation. On the other hand, the color thresholding

generates a more refined mask by classifying the color of each pixel in the image as fire or

not based on a color range. Since fire colors are not limited to fire itself and are present

in various other objects, the final step of the method narrows down the color-based mask

to the regions identified as fire by the network through an intersection. The graph cuts

technique further enhances the granularity of the masks by integrating both geometric
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and color information, providing a more comprehensive segmentation.

The architectural framework for the networks aligns with our previous strat-

egy (PEREIRA; VIEIRA; VILLELA, 2022), employing the CoAtNet-4 (DAI et al., 2021).

Both the prior classifier and the patch classifier share the same CoAtNet-4 architecture

but are trained on distinct datasets due to their specific purposes.

The patch classifier is primarily involved in region classification, producing an

initial mask that may suffer from imprecision and a high FPR. To refine this mask and

address these issues, it is combined with a mask generated through a process involving

graph cuts and color thresholding. This process commences with the construction of a

graph G = ⟨V,E⟩ for each image. In this graph, pixels are represented as nodes and are

connected to their four neighboring nodes, along with a source node and a sink node. The

source node symbolizes the background, while the sink node represents the foreground.

The objective is to assign a label xi to each node i ∈ V , indicating whether it belongs

to the foreground (xi = 1) or the background (xi = 0). This binary labeling problem is

tackled using graph cuts, minimizing energy functions that factor in pixel similarity with

the terminal nodes (source and sink) and their neighborhood.

Many methods require manual selection of seed pixels for foreground and back-

ground in the graph cuts labeling step (LI et al., 2004; AGRAWALA et al., 2004), with

these labels remaining fixed throughout the min-cut optimization. An illustration of such

user input and the resulting outcome is depicted in Figure 4.2.

Figure 4.2: Example of graph cut result with user input. Source: Li et al. (2004).

However, our approach automates this process by determining which pixels belong
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to fire regions and which belong to the background region. Importantly, these labels are

not static during the min-cut optimization but instead serve as initial conditions (Sá et

al., 2005).

This approach relies on a reference to calculate pixel similarity with the terminal

nodes, making use of the color distribution from the training set to define the seeds. This

is achieved by determining the distance to the nearest fire and non-fire colors for each

pixel. Given the extensive number of colors in the dataset, as depicted in Figure 4.3, the

use of every possible color would be impractical. Interestingly, the fire color distribution

in this dataset features a larger number of unique colors, encompassing numerous distinct

hues reminiscent of fire.

(a) Fire color distribution. (b) Non-fire color distribution.

Figure 4.3: Color distribution in the patch training set in the RGB space.

To streamline this process, the k-means algorithm is employed to cluster the

colors, reducing the search space to 1024 colors. Resembling the approach used by Li (LI

et al., 2004), we define energy functions, denoted as E1 and E2. E1 is defined as follows:

E1(xi = 1) =
dFi

dFi + dBi
E1(xi = 0) =

dBi
dFi + dBi

∀i ∈ V, (4.1)

where dFi = |C(i) − KF(i)|, which is the distance between the color of pixel i and its

closest color from the foreground clusters. Following the same logic for the background

distance, we have dBi = |C(i)−KB(i)|.



4 Proposed Method 41

Similarly, E2 is defined as follows:

E2(xi, xj) = λ|xi − xj|, (4.2)

where the color difference between pixels xi and xj is multiplied by a λ value to balance

the energy sum.

These energies are computed for each node in V . The term E1 determines the

inherent inclination of each pixel to belong to either fire or background, while E2 estab-

lishes the suitability of neighboring pixels to have the same label. To illustrate the graph

construction, Figure 4.4 showcases a few connections between pixels of a fire image and

the terminal nodes.

B

F
Object terminal

Background terminal

Figure 4.4: Illustration of initial graph connections between pixels of a fire image and the
terminal nodes.

To minimize the energy functions, the Boykov-Kolmogorov algorithm (BOYKOV;

KOLMOGOROV, 2004) is employed, a method that has demonstrated superior perfor-

mance compared to previous methods in the context of CV problems, making it an ideal

choice for this approach.

Finally, in constructing the color thresholding process to further enhance seg-

mentation granularity, we leverage the color distribution of fire from the training set of

patches. This approach facilitates the acquisition of a color range that optimally repre-

sents potential fire colors. The performance of color thresholding in fire segmentation also

necessitates evaluation for potential refinements.
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5 Experiments and Results

5.1 Datasets

As the proposed method involves a combination of neural networks and other CV tech-

niques, working with different datasets is essential, as each network serves a specific

purpose.

The creation of the initial classifier involves the compilation of a dataset from

5416 images originating from Li, Yan and Liu (2020), complemented by an additional

905 images sourced from Research (2017) and Saied (2020). This dataset maintains a

distribution of 2605 images within the “fire” class and 3716 images within the “non-fire”

class. Figure 5.1 shows a set of sample images used to train the prior classifier.

Figure 5.1: Sample images from the training set of the prior classifier.

In addition to neural network training, the dataset is also used for validation.

Hence, this dataset was split into a training set and a validation set. The data division

was performed in such a way that 85% of the images are used for training, and 15% are

allocated for validation. The image distribution per class and dataset split is depicted in

Figure 5.2.

The training of the patch classifier involved using datasets from two sources: the
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Figure 5.2: Prior classifier dataset distribution.

compilation by Chino et al. (2015) and the collection of images assembled by Cazzolato et

al. (2017), which comprises emergency situation images for fire and smoke analysis. The

dataset constructed by Chino et al. (2015) contains images of size 50×50 pixels (patches).

By training the network on this dataset, the desired classifier for fire region identification

can be obtained. Figure 5.3 shows images used to train the patch classifier, being 5.3a,

5.3b, 5.3e and 5.3f from the training set used by Chino et al. (2015), and 5.3c, 5.3d, 5.3g

and 5.3h from Cazzolato et al. (2017).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Sample images from the training set of the patch classifier.

This dataset used for the patch classifier consists of 240 images, with 80 belonging

to the “fire” class and 160 to the “non-fire” class. In order to expand and balance

the dataset further, an additional 240 images were added from the dataset created by
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Cazzolato et al. (2017). This results in a dataset of 240 labeled “fire” patches and 240

labeled “non-fire” patches. The image distribution per class and dataset split is depicted

in Figure 5.4.
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Figure 5.4: Patch classifier dataset distribution.

Ultimately, an additional dataset is employed to evaluate our methodology. This

segmentation dataset, curated by Chino et al. (2015), encompasses a total of 226 images.

Despite its size, the dataset presents a set of challenging images for a comprehensive as-

sessment. Out of these, 119 images depict instances of fire, while the remaining 107 images

do not feature any fire. The segmentation performance of our approach is benchmarked

against other methodologies using this dataset. Figure 5.5 displays a selection of images

from the test set assembled by Chino et al. (2015).

Figure 5.5: Sample images from the test set.



5.2 Experiment Setting 45

5.2 Experiment Setting

The complete architecture is implemented using the PyTorch framework (PASZKE et

al., 2019) and is obtained from a publicly available repository1. In the experiments, the

model is initialized with random weights. For the training of the patch classifier network,

the Adaptive Moment Estimation (Adam) optimizer is employed, along with a cross-

entropy loss function, a learning rate of 0.001, a batch size of 8, and training over 40

epochs. Similarly, the training of the prior classifier also uses the Adam optimizer and

cross-entropy loss function, spanning 40 epochs. However, the prior classifier training

incorporates a lower learning rate of 0.0001, a batch size of 12, and a learning rate decay

by a factor of 0.1 at the 12th, 24th, and 36th epochs to facilitate learning.

In order to enhance the performance of the initial model and achieve a more

balanced classification, adjustments have been made to the class threshold. Rather than

classifying images with an output probability of 0.5 or greater as non-fire, the criterion

is now set at 0.7. This modification ensures that an image is discarded only if the model

is highly confident that it does not contain any fire. Consequently, even if some non-fire

images proceed to the next step, the patch classifier can correct this error by not detecting

fire regions within the image. This refinement significantly improves the overall accuracy

and reliability of the classification process.

Similarly, the class threshold for the patch classifier undergoes modification to

offer increased flexibility to the graph cuts in making the final determination regarding

pixel classification as fire or non-fire. The non-fire threshold for the patch classifier is

adjusted to 0.9, indicating that only predictions with a probability exceeding 90% are

classified as non-fire. This adaptation empowers the graph cuts to exert their influence,

given the high confidence of the patch classifier in identifying non-fire regions.

During the construction of graphs from images, instances may arise where the

difference between dFi and dBi is relatively small, potentially causing confusion in the graph

cut algorithm. To mitigate this, a criterion is introduced: if the difference in distance is

less than a quarter of the maximum possible distance, the energy function E1(xi = 0) is

increased by a factor of 1.5. Through experimentation, it was determined that a value

1⟨https://github.com/chinhsuanwu/coatnet-pytorch⟩

https://github.com/chinhsuanwu/coatnet-pytorch
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of 0.0005 for λ in Eq. (4.2) yields the best results. This adjustment contributes to a

clearer distinction between fire and non-fire regions, thereby enhancing the accuracy of

the segmentation process. The graph cut algorithm is implemented using the PyMaxflow

library2.

5.3 Evaluation Criteria

This section introduces the main objective comparison criteria to evaluate fire detection

methods. The most common are recall (also known as TPR), precision, accuracy, F1-score

and Fβ-score. With C being the confusion matrix of a binary problem, Ci,j refers to the

number of samples known to be in class i and predicted to be in class j, with i, j = 1, 2.

Hence, the overall accuracy is defined as the number of correctly predicted pixels divided

by the total number of pixels:

A =

∑2
i=1 Ci,i∑2

i=1

∑2
j=1 Ci,j

. (5.1)

The F1-score is the harmonic mean of the precision (P ) and recall (R) and is

defined as follows:

F1-score = 2× P ×R

P +R
, P =

TP

TP + FP
, R =

TP

TP + FN
, (5.2)

where TP is the number of true positive pixels correctly predicted as positive (fire), FP

is the number of true negative pixels predicted as positive and FN is is the number of

true positive pixels predicted as negative (non-fire).

The Fβ-score serves as a versatile metric, extending the F1-score to allow control

over the balance between precision and recall through the β coefficient. This parameter

plays a crucial role in adjusting the emphasis on either precision or recall. Specifically, a

β < 1 accentuates the importance of precision and proves beneficial for scenarios where

minimizing false positive predictions is of particular interest. Conversely, a β > 1 dimin-

2⟨https://github.com/pmneila/PyMaxflow⟩

https://github.com/pmneila/PyMaxflow
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ishes the significance of precision, prioritizing the reduction of false negative predictions.

Fβ-score = (1 + β2)× P ×R

β2 × P +R
. (5.3)

5.4 Results

An extensive series of experiments was conducted to find the best parameters for the

graph cuts. Table 5.1 shows a sample of the combinations tested and their respective

results. In this table, the column labeled k represents the number of clusters employed

for k-means clustering during the calculation of color distances for the graph cut energies,

as elucidated in Chapter 4. Importantly, no substantial improvements were observed for

higher values of k, and such increments would likely introduce unnecessary complexity

without proportional benefits.

Table 5.1: Sample of parameter combinations tested and their respective results.

k λ TPR FPR

5 0.1 0.90 0.21
15 0.05 0.93 0.21
25 0.03 0.96 0.24
50 0.01 0.96 0.23
128 0.01 0.96 0.21
256 0.003 0.96 0.19
512 0.001 0.96 0.18
1024 0.0001 0.97 0.17

To evaluate the efficacy of the method, its performance is assessed on the dataset

compiled by Chino et al. (2015), juxtaposing the results with those achieved by alternative

approaches. A comprehensive summary of the experimental outcomes for each step of the

proposed method, as well as their combinations, is presented in Table 5.2. Notably, the

color classifier and graph cuts demonstrate an exceptionally high TPR. However, they

also exhibit a notable tendency to overlook a substantial number of true negative pixels.

As indicated in the ablation study, the prior classifier effectively reduces the FPR at a

small cost to TPR.

Table 5.3 displays the best results for TPR and FPR values obtained from the

experiments, comparing them with the results reported by state-of-the-art works. Our
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Table 5.2: Results of each step and their combinations.

Phase TPR FPR

Without prior classifier

Color classifier 0.99 0.59
Graph cut 0.99 0.36
Patch classifier 0.97 0.17
Intersection 0.96 0.11

With prior classifier

Color classifier 0.91 0.20
Graph cut 0.97 0.23
Patch classifier 0.94 0.07
Intersection 0.92 0.03

method achieves the highest TPR among all the approaches, preserving a competitive

FPR. It is important to note that, in the case of the method proposed by Mĺıch et al.

(2020), while it achieves the lowest FPR for the problem, it comes with the cost of a 0.87

TPR.

Table 5.3: Comparison of TPR and FPR reported by various approaches.

Method TPR FPR

Color Classification (CHINO et al., 2015) 0.77 0.13
BoWFire et al. (CHINO et al., 2015) 0.65 0.03
CNNFire T=0.40 (MUHAMMAD et al., 2019) 0.82 0.02
CNNFire T=0.45 (MUHAMMAD et al., 2019) 0.85 0.04
CNNFire T=0.50 (MUHAMMAD et al., 2019) 0.89 0.07

Mĺıch et al. (MLÍCH et al., 2020) 0.87 0.01
Previous method (PEREIRA; VIEIRA; VILLELA, 2022) 0.91 0.04
Novel method (PEREIRA; VIEIRA; VILLELA, 2023) 0.92 0.03

Table 5.4 reveals a significant improvement in precision and F1-score compared to

the previous proposal. As noted by Pereira, Vieira and Villela (2022), it is crucial to high-

light the considerable class imbalance within the dataset, contributing to the challenges

with these criteria. Despite a similar number of fire and non-fire images, the dataset

contains around 21 times more non-fire pixels than fire pixels. In response to this, the

F2-score was computed, resulting in a value of 0.80. Given the critical importance of not

missing fire cases in fire detection, where false alarms are less harmful than undetected

fires, the method demonstrates superior fire classification (TPR) compared to the cited

methods. Furthermore, the latest method achieves an accuracy of 0.96, surpassing the

0.95 accuracy reported by Pereira, Vieira and Villela (2022). Although some works, like
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those by Rudz et al. (2013), Chen, Wu and Chiou (2004), Muhammad et al. (2019), and

Mĺıch et al. (2020), achieve good precision and F1-score values, they still fall behind in

terms of TPR.

Table 5.4: Comparison of Precision and F1-score reported by different works.

Method Precision F1-score

Chino et al. (CHINO et al., 2015) 0.50 0.57
Rudz et al. (RUDZ et al., 2013) 0.63 0.52
Rossi et al. (ROSSI; AKHLOUFI; TISON, 2011) 0.39 0.28
Celik et al. (CELIK; DEMIREL, 2009) 0.55 0.54
Chen et al. (CHEN; WU; CHIOU, 2004) 0.75 0.25
Muhammad et al. (MUHAMMAD et al., 2019) 0.86 0.91

Mĺıch et al. (MLÍCH et al., 2020) 0.73 0.79
Previous method (PEREIRA; VIEIRA; VILLELA, 2022) 0.50 0.65
Novel method (PEREIRA; VIEIRA; VILLELA, 2023) 0.54 0.68

In Figure 5.6, the superiority our novel method is evident as it outperforms state-

of-the-art results in terms of TPR, while maintaining a very low FPR comparable to

the best-reported results in the literature. It is noticeable how more recent methods,

harnessing the advent of deep learning, improved the state of the art. Despite consistently

low FPR results, some methods struggle to achieve a balance between TPR and FPR.
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Figure 5.6: Comparison of results in the ROC space.

Figure 5.7 visually presents the results of the method applied to a fire image,
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displaying the input image (5.7a), the corresponding ground truth (5.7b), and the resulting

output achieved by several approaches. The masks obtained by Chen, Wu and Chiou

(2004) and Rossi, Akhloufi and Tison (2011) are evidently unable to identify the fire in

this particular sample. In contrast, while other approaches achieve fine-grained masks,

our method successfully identifies the entire extent of the fire by prioritizing the positive

class.

(a) Input image (b) Ground truth (c) Celik

(d) Chen (e) Rossi (f) Rudz

(g) Color Classification (h) BoWFire (i) CNNFire

(j) Previous method (k) Novel method

Figure 5.7: Result of various approaches for a fire image.

Figure 5.8 visually highlights the enhancements achieved through the integration

of graph cuts into our methodology. Upon combining graph cuts with the other steps,

a notable reduction in the FPR is observed. This reduction is attributed to the focused
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predictions on regions identified as actual fire by the patch classifier, showcasing the

efficacy of our refined approach.

Original Ground truth

Previous method Graph cut

Final result

Figure 5.8: Visual demonstration of improvements over our previous method.
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6 Conclusion

In today’s world, characterized by the exponential growth of data and the increasing

demand for time efficiency and accuracy, the role of AI is becoming increasingly crucial.

AI algorithms have the potential to automate complex processes, enabling faster and more

precise analysis of large volumes of data.

In the context of fire detection, the ability to segment fire regions in images is

of great significance. Fire segmentation not only allows for the identification and local-

ization of fire incidents but also provides a comprehensive understanding of the affected

area, aiding in the planning of effective responses and mitigation strategies. A promising

approach to addressing the fire detection problem is the combination of neural networks

with graph cuts. By harnessing the power of DL and extracting meaningful features from

input data, neural networks can learn to distinguish fire patterns from normal background

elements.

The integration of graph cuts and color thresholding further enhances the accu-

racy of fire detection, capturing distinct colors associated with fire. This combined ap-

proach shows significant potential in detecting fires with greater efficiency and reliability,

contributing to data-driven decision-making to prevent future incidents and minimizing

the devastating consequences of fires.

In summary, this approach excels in advancing TPR while simultaneously re-

ducing the FPR, a pivotal achievement given the criticality of accurately identifying fire

instances. The application of graph cuts and the color thresholding algorithm following

the patch classification step ensures that the resultant segmentation accurately outlines

fire-related regions within an image. This synergistic combination of methods allows for a

fine-grained understanding of the spatial extent and boundaries of fire instances, thereby

contributing to a more precise analysis of fire occurrences.

While our approach excels in critical aspects, there is still room for improvement

in refining the generated masks to adequately capture fire shapes. The inherent difficulty

of the problem is illustrated in Figure 4.3, as the majority of fire colors are also present
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in non-fire images, posing a significant challenge. Consequently, future research efforts

will concentrate on conducting extensive experiments with the proposed combination of

methods and refining associated parameters.

Achieving a remarkable TPR of 0.96 and a low FPR of 0.04 in the final seg-

mentation results is possible with a perfect prior classifier. Therefore, enhancements

to the models should be considered, experimenting with transfer learning methods and

pre-trained models. Moreover, strategies such as augmenting the training dataset with

synthetic data and applying data augmentation techniques are viable options to enhance

the robustness and effectiveness of the models.
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