
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bachelor’s Degree in Computer Science

Distributional Safety Critic for Stochastic
Latent Actor-Critic

Thiago Silva Miranda

JUIZ DE FORA

JULY, 2023



Distributional Safety Critic for Stochastic
Latent Actor-Critic

Thiago Silva Miranda

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bachelor’s Degree in Computer Science

Supervisor: Heder Soares Bernardino

JUIZ DE FORA

JULY, 2023



Distributional Safety Critic for Stochastic

Latent Actor-Critic

Thiago Silva Miranda

MONOGRAPH SUBMITTED TO THE FACULTYOF THE INSTITUTODE CIÊNCIAS

EXATAS OF THE UNIVERSIDADE FEDERAL DE JUIZ DE FORA, AS AN INTE-

GRAL PART OF THE REQUIREMENTS NECESSARY TO OBTAIN THE BACHE-

LOR’S DEGREE IN COMPUTER SCIENCE.

Approved by:

Heder Soares Bernardino
PhD in Computational Modeling

Saulo Moraes Villela
PhD in Systems and Computing Engineering

Thiago Dias Simão
PhD in Computer Science

JUIZ DE FORA

2023, JULY 14



To my girlfriend, friends and family.



Abstract

When employing reinforcement learning techniques in real-world applications, it is often

desirable to constraint the agent, such that it does not perform actions that would lead to

potential damage, harm or unwanted scenarios in general. In order to specify and enforce

these constraints, current state-of-the-art safe reinforcement learning algorithms rely on

the constrained Markov decision process framework which makes use of a cost function

to inform the agent about how unsafe each transition is. Particularly, recent approaches

focus on developing safe behavior under conditions where the full observability assumption

is relaxed and, instead of having access to the true state of the environment, the agent

receives observations with incomplete information. In this vain, we develop a method that

combines distributional reinforcement learning techniques with methods used to facilitate

learning in partially observable environments. Our approach, called distributional safe

stochastic latent actor-critic (DS-SLAC), uses an implicit quantile network as safety critic

and learns based on a stochastic latent representation of the environment. We evaluate

the DS-SLAC performance on four Safety-Gym tasks. Ultimately, DS-SLAC obtained

results better than those reached by sate-of-the-art algorithms in two of the evaluated

environments, while being able to develop a safe policy in three of them. Lastly, we also

identify the main challenges of performing distributional reinforcement learning in the

safety constrained partially observable setting.

Keywords: Reinforcement Learning, Safety, Distributional RL.



Resumo

Ao empregar técnicas de aprendizado por reforço em aplicações do mundo real, muitas

vezes é desejável restringir o agente, de modo que ele não execute ações que levariam

a posśıveis danos, perigos ou cenários indesejados de forma geral. A fim de especificar

e impor essas restrições, os atuais algoritmos de aprendizado por reforço seguro perten-

centes ao estado da arte baseiam-se no framework chamado de processo de decisão de

Markov restrito, que faz uso de uma função de custo para informar o agente sobre o quão

insegura cada transição é. Particularmente, abordagens recentes focam no desenvolvi-

mento de comportamento seguro sob condições onde a suposição de plena observabilidade

é relaxada e, ao invés de ter acesso ao verdadeiro estado do ambiente, o agente recebe

observações com informações incompletas. Nesse sentido, desenvolvemos um método que

combina técnicas de aprendizado por reforço distributivo com métodos usados para facil-

itar o aprendizado em ambientes parcialmente observáveis. Nossa abordagem, chamada

de distributional safe stochastic latent actor-critic (DS-SLAC), usa uma implicit quantile

network (IQN) como cŕıtico de segurança e aprende com base em uma representação es-

tocástica latente do ambiente. A performance do método proposto DS-SLAC é avaliada

em quatro tarefas do Safety-Gym. Em última análise, o DS-SLAC consegue resultados

superiores aos alcançados por algoritmos estado da arte em dois dos ambientes avaliados,

ao mesmo tempo em que é capaz de desenvolver uma poĺıtica segura para três deles. Por

fim, também identificamos os principais desafios de realizar o aprendizado por reforço

distributivo no ambiente parcialmente observável com restrição de segurança.

Palavras-chave: Aprendizado por reforço, aprendizado por reforço profundo, segurança,

aprendizado por reforço distribucional.



Acknowledgments

To my family for their unconditional support.

To professor Heder for his advice, friendship and outstanding work ethic.

To my friends for inspiring me to go beyond my expectations.

To Thiago Simão and professor Nils Jansen who welcomed me wholeheartedly

during my stay in the Netherlands, without which this work would not have been possible.



“We all wear such intellectual blinders

and make such inexplicable blunders that

it is amazing that any progress is made

at all.”.

Richard Bellman



Contents

List of Figures 7

List of Tables 8

List of Abbreviations 9

1 Introduction 10

2 Background 13
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Tabular Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Distributional Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Implicit Quantile Network . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Constrained Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 27

3 Related Work 29
3.1 Fully Observable Safe Reinforcement Learning . . . . . . . . . . . . . . . . 30
3.2 Partially Observable Safe Reinforcement Learning . . . . . . . . . . . . . . 32

4 Distributional Safe Stochastic Latent Actor-Critic 37

5 Computational Experiments 42
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 47

Bibliography 49



List of Figures

2.1 The perception-action-learning loop. Adapted from (SUTTON; BARTO,
2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Example of a standard feedfoward deep neural network. . . . . . . . . . . 22

3.1 Different Safety-Gym environments. In ”Goal” tasks, the agent has to
reach the goal (green cilinder) while trying to avoid hazards (blue circles
and blue cube) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Modified observations received by the agent at each Safety-Gym environment 33

5.1 Learning curves for DS-SLAC in four different Safety-Gym environments. 43
5.2 Normalized reward return and cost return. . . . . . . . . . . . . . . . . . . 44



List of Tables

5.1 Normalized final results with each cell containing a tuple (J̄r(π), J̄c(π)). . . 44
5.2 Hyperparemeters for DS-SLAC. . . . . . . . . . . . . . . . . . . . . . . . . 46



List of Abbreviations

RL Reinforcement learning

DL Deep learning

NN Neural network

DNN Deep neural network

DP Dynamic programming

TD Temporal difference

Safe RL Safe reinforcement learning

MDP Markov decision process

CMDP Constrained Markov decision process

POMDP Partially Observable Markov decision process

CPOMDP Constrained partially observable Markvo decision process

SAC Soft actor-critc

SLAC Stochastic latent actor-critc

TRPO Trust region policy optimization

PPO Proximal policy optimization

IQN Implicit Quantile Network

CPO Constrained policy optimization

WCSAC Worst case soft actor-critc

LAMBDA Lagrangian model-based agent

Safe SLAC Safe stochastic latent actor-critc

DS-SLAC Distributional safe stochastic latent actor-critc



10

1 Introduction

During recent years, the accelerated growth in the field of machine learning has become

particularly evident. Specifically, the widely known Deep Neural Networks (DNNs) have

been used to produce significant improvements in the state of the art in a range of different

tasks. Some domains that have greatly benefited from the use of DNNs include computer

vision, natural language processing, and medical applications. The great availability of

data, combined with the increase in computational power, as well as the improvement of

scalability techniques, has provided these function approximators with the necessary tools

to generate images never seen before (RAMESH et al., 2022), understand and create texts

in natural language (BROWN et al., 2020), and even help with programming (CHEN et

al., 2021).

Although most current deep learning applications fall under the umbrella of meth-

ods classified as supervised learning (POUYANFAR et al., 2018), DNNs have also been

used to succeed in more general tasks, which call for an agent to be able to make a series

of decisions in complex environments. The methods used to tackle such problems belong

to the area of Reinforcement Learning (RL) and their combination with DNNs is called

Deep Reinforcement Learning (DRL) (ARULKUMARAN et al., 2017). DRL has enjoyed

great success when applied to games. Notable results include achieving super human level

play at games from the Atari 2600 console (MNIH et al., 2013) and beating the best Go

player in the world (SILVER et al., 2016). However, as we aim to apply DRL techniques

to real world scenarios, an agent’s performance ceases to be our only concern. In those

circumstances, how safely an agent can learn and execute his assigned tasks can be just

as important as how well it performs on the tasks themselves.

For instance, a robot that is controlled by an AI must never harm a human

being, and a self driving car must make every effort to avoid actions that cause harm to

the vehicle, even during it’s training procedure. Safe Reinforcement Learning (Safe RL)

(GARCIA; FERNÁNDEZ, 2015) is the area concerned with addressing this problem. It

aims to create agents which are robust enough to act in the real world without causing



1 Introduction 11

harm or performing unwanted actions. This is particularly challenging, as RL agents

generally learn by trial and error. These agents explore their action space in order to find

the optimal action in each situation. As such, they would naturally execute undesirable

actions before learning that these actions lead to poor outcomes.

Current approaches to the safe reinforcement learning problem mainly rely on

Safety-Gym tasks (RAY; ACHIAM; AMODEI, 2019) to benchmark performance and use

the constrained Markov decision processes (CMDP) (ALTMAN, 1999) as their formalism.

In CMDPs, beyond the usual reward signal, the RL agent also receives a cost signal, which

encapsulates how unsafe or undesirable a transition is. Additionally, recent methods have

focused on performing safe reinforcement learning in environments with a high degree

of partial observability. To this end, these methods learn from high dimensional sen-

sory inputs as observations in a constrained partially observable Markov decision process

(CPOMDP) (ISOM; MEYN; BRAATZ, 2008; LEE et al., 2018) setting.

As et al. (2022) proposed a model-based approach called LAMBDA, to learn

directly from pixels. Lambda utilizes Bayesian world models to estimate optimistic upper

bounds in respect to the reward signal, as well as pessimistic upper bounds in respect

to the cost signal; these are, then, used to train the agent’s policy. In the same vain,

Hogewind et al. (2023) method also focus on pixel learning. Their Safe SLAC algorithm,

on the other hand, is assisted by latent variable model that is trained to predict both

the reward and cost signal. Then, it uses an inferred latent state (produced by the latent

variable model) as input to the policy; in order to address the strong partial observability

coming from the use of pixels as observations.

In this work, we develop a method that augments Hogewind et al. (2023) approach

by using distributional RL techniques (BELLEMARE; DABNEY; ROWLAND, 2023),

which are known to improve sample-efficiency and performance of RL agents (DABNEY

et al., 2018b; HESSEL et al., 2018). Furthermore, the use of distributional RL also

allows for risk-averse behavior (TANG; ZHANG; SALAKHUTDINOV, 2019; YANG et

al., 2023). That is, for an agent to not only favor transitions that lead to a lower cost on

average, but to also avoid transitions with high variance, that could eventually lead to

extremely high cost, even if these high cost were to happen rarely. We call our method



1 Introduction 12

distributional safe stochastic latent actor-critic (DS-SLAC). We evaluate DS-SLAC using

different Safety-Gym tasks and achieve comparable performance to LAMBDA and Safe

SLAC in some of the environments. Ultimately, we identify some of the challenges involved

in performing distributional safe reinforcement learning under high partial observability,

as well as the main obstacles to producing risk-averse behavior. Lastly, the proposed

approach is capable of developing a safe policy for most of the tested environments.



13

2 Background

In this chapter, the main concepts that are necessary for understanding this work are

presented. Section 2.1 discusses classic reinforcement learning, and builds the core ideas

of the field, which are important for the understanding of the remaining sections. Here,

(SUTTON; BARTO, 2018) is used as the main frame of reference and is not cited through-

out the text to avoid repetition. Thus, the reader can assume that (SUTTON; BARTO,

2018) is the reference used for any of the concepts, unless stated otherwise. Notation also

follows the book closely.

Section 2.2 is about deep reinforcement learning. It explains deep neural net-

works briefly, as high level understanding of the topic is already enough for the reader

to comprehend this work. Furthermore, it mentions some of the main deep reinforce-

ment learning algorithms, and mainly focus on explaining the soft actor-critic algorithm,

which will be used in subsequent chapters. Section 2.3 describes some of the distribu-

tional reinforcement learning algorithms, and more heavily explains the implicit quantile

network algorithm, which also is used in later chapters. Lastly, Section 2.4 discusses the

constrained Markov decision process formalism.

2.1 Reinforcement Learning

The field of reinforcement learning took shape along two main lines. The first comes from

psychology and brings concepts of learning by trial and error extracted from research on

animals. The second is related to optimal control theory, which seeks to optimize the

behavior of an agent in a dynamic system. Both areas provided fundamental ideas to

support and allow the formation of the current theory of RL.

At its core, RL is a set of computational methods that seek to capture ideas

and automate interactive learning. These methods follow a constant iteration cycle that

is demarcated by the measure which is called time step. At each time step, an agent

interacts with an environment choosing an action, based on the current state of the



2.1 Reinforcement Learning 14

environment, receiving a new state and a scalar signal that is called reward. At each step

of the interaction, the agent updates its knowledge about the environment based on the

new information acquired. This is the fundamental cycle present in all RL methods. It is

called the perception-action-learning loop (ARULKUMARAN et al., 2017).

Figure 2.1: The perception-action-learning loop.
Adapted from (SUTTON; BARTO, 2018).

The agent’s goal is to develop a policy, typically called π, that maximizes the

value of rewards received by the environment. A policy is a mapping from states to

actions, and can be deterministic or stochastic. In the first case, each state is directly

mapped to a specific action. In the second each state has a probability distribution over

the set of possible actions.

2.1.1 Markov Decision Process

The cycle of interactions presented above can be mathematically formalized through a

Markov decision process (MDP), more specifically, a finite MDP. In turn, we can charac-

terize an MDP as a tuple of four elements (S, A, p, γ), where:

• S is the set of all possible states.

• A is the set of all possible actions.

• p(r, s′ | s, a) is the joint probability of a reward r and a next state s′ given state s

and action a.



2.1 Reinforcement Learning 15

• γ ∈ [0, 1] is the discount factor.

The states of a MDP must follow the Markov property, that is, p must fully

characterize the dynamics of the environment. Meaning, the probabilities of state and

reward transitions in a time step t depend only on the state observed in the previous time

step (t − 1). Intuitively, the state should contain all relevant and necessary information

for the agent to be able to make the best decision.

Finite MDPs provide a flexible framework for encapsulating RL problems and

approaching them with mathematical reasoning. However, when dealing with RL, not all

features of an MDP are available. The dynamics of the environment p are often unknown,

states are not fully observable and may even disobey the Markov property. Even so, the

theory and concepts built on the somewhat limiting assumptions of MDPs form the basis

of all current RL methods. Thus, understanding it is essential to also understand the

functioning of RL algorithms.

2.1.2 Dynamic Programming

Whenever a full model of the the transitions probabilities p of the environment is available,

a MDP can be solved via planning techniques. In this case, the methods employed belong

to the field of Dynamic Programming (DP).

DP focuses on finding the optimal policy (π∗) given a perfect model of the en-

vironment. For this purpose, the concept of a value function v is defined. The value

function of a state corresponds to the expected value of the return Gt, where the return

is the discounted sum of all rewards achieved when starting at that state:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γkRT (2.1)

vπ(s) = Eπ[Gt | St = s] (2.2)

where both Rt and St are random variables.

In a similar way, one can define the concept of a value function for a state-action

pair, which is commonly known as the action value function:



2.1 Reinforcement Learning 16

qπ(s, a) = Eπ[Gt | St = s, At = a] (2.3)

It is important to point out that both state and action values are conditioned

on the policy π, as future rewards are decided based on the actions taken by the agent.

Analogously, the concepts of optimal value functions are also defined:

v∗(s) = max
π

vπ(s) (2.4)

q∗(s, a) = max
π

qπ(s, a) (2.5)

these functions correspond to the value functions that are reached when the agent follows

an optimal policy (π∗), i.e., a policy that results in the highest expected return for the

agent.

The state and action values of a policy can be calculated using linear programming

methods by solving a system of linear equations. However, these state and state-action

values also have a recursive property, which allows for them to be calculated iteratively.

This is expressed in the so called Bellman equations, and can be defined as:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.6)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)] (2.7)

In the same manner, the recursive property for the optimal state and state-action

value functions are defined in the Bellman optimality equations:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.8)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (2.9)

DP algorithms make use of these Bellman equations to arrive at an optimal policy.

They work as follows: an arbitrary policy π is initialized as well as initial estimate for the



2.1 Reinforcement Learning 17

values of each state. From there, an iteration consisting of two steps begins. The first step,

called policy evaluation, seeks to find the current state values when following the policy

π; to do so, the algorithms update the current values according to the Bellman equations.

The second step, called policy improvement, updates the policy π so that it becomes the

deterministic policy that is greedy with respect to the new calculated state values. When

the policy evaluation step does not generate any change in the state values in relation to

the previous iteration, it means that the optimal policy π∗ has been reached, since this

policy obeys the Bellman optimality equations. This process is called generalized policy

interaction (GPI) and guarantees asymptotic convergence for π∗.

2.1.3 Tabular Reinforcement Learning

Dynamic programming methods are powerful but, as mentioned earlier, they require a

perfect model of the dynamics of the environment. This type of model is usually unavail-

able when dealing with more complex scenarios. To solve this problem, reinforcement

learning uses sampling to estimate action values, allowing agents to learn through direct

interaction with the environment.

There are two main ways to learn by sampling in RL. Monte Carlo methods and

temporal difference (TD) learning methods. Both are used to perform policy evaluation

estimating action values. From then on, the policy improvement step remains the same.

Monte Carlo methods collect the complete sequence of states, actions and rewards

from various episodes. An episode consists of time steps from 1 to T , where T is the ending

time step. From these data, such methods calculate the average of the returns of each

state-action pair and use this average as an estimate of the value of this pair. By the law

of large numbers (HSU; ROBBINS, 1947), the average converges to the real value as the

number of episodes increases.

TD learning methods, on the other hand, make use of the TD error δt:

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At). (2.10)

The idea is the following: it is possible to estimate the action value Q(St, At),



2.1 Reinforcement Learning 18

through the use of the next action value estimate Q(St+1, At+1) and the received reward

Rt+1. In the same way as qπ(s, a) depends on the values of the next reward r and the

next action value qπ(s
′, a′) in Equation 2.7. Thus the temporal difference error calculates

the error between the current action value estimate Q(St+1, At+1) and a better estimate

Rt+1 + γQ(St+1, At+1). In this way, an update is performed at each time step based on

the parameter υ, which defines the size of the update. This parameter is called step size.

Thus, the current action value Q(St, At) can be updated according to:

Q(St, At) = Q(St, At) + υδt (2.11)

by updating with enough samples of transitons containing data of all the possible states

and all the possible actions, the action value estimates converge to true action values qπ.

A problem arises, however, when sampling methods are used to solve control

problems. The agent encounters a dilemma during its process of interacting with the

environment. On one hand, it can use the knowledge acquired so far to choose the actions

that result in the highest reward based on its current beliefs. On the other hand, the

agent can seek to improve its understanding of the environment, choosing actions that

are not perceived as optimal, updating its beliefs and improving its chances of performing

well. This problem is known as exploration and exploitation tradeoff (KAELBLING;

LITTMAN; MOORE, 1996).

An agent that explores too much, to get to know its environment better, never

achieves a good performance by choosing sub-optimal actions. On the other hand, the

agent that always chooses the action with the highest value can perform poorly if its

estimates are wrong or if the environmental conditions change. One way to solve this

problem is to use a policy b to choose actions while learning, but at the same time learn

about another policy π. Policy b is the behavior policy and is constructed in a way such

that it explores all possible state-action pairs. On the other hand, the devolved policy π is

only concerned in being greedy in respect to the action values and not necessarily visiting

all possible states. The setting where the agent learns a policy, based on experience

collected by a different policy is called the off-policy learning setting.

Possibly the most well-known RL algorithm is Q-learning. Q-learning is an off-



2.1 Reinforcement Learning 19

policy algorithm based on the TD error. It performs its value updates based on the

action of the next state that has the highest estimated value. It is based on the Bellman

optimallity equations from DP. Thus, Q-learning estimates the values of the optimal policy

following an arbitrary policy:

Q(St, At)← Q(St, At) + υ[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (2.12)

Another well-known algorithm is called SARSA. SARSA is an on-policy algorithm

that learns and improves the current policy based on a sampled action of the policy itself:

Q(St, At)← Q(St, At) + υ[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.13)

2.1.4 Function Approximation

Both SARSA and Q-learning perform well when working with a relatively small state

space (what is known as the tabular setting). However, for many interesting applications

the state space may be extremely large, to the point where it becomes unfeasible to

enumerate all of the states in order to calculate their values and subsequently find the

optimal policy. In this case, one forgoes calculating the exact value of each state in

favor of merely approximating it. Doing so allows for the generalization of knowledge

across states, resulting in a far more compact representation of the value function. In this

way, RL algorithms can be extended for settings with combinatorial or even infinite state

spaces.

To approximate action values, states are converted into sets of features. Then,

by choosing a function q̂, that is parametrized by a set of weights w, one can approximate

the true value function qπ by performing stochastic gradient descent (SGD) (ROBBINS;

MONRO, 1951) on the weights w based on the TD error and the function’s gradient:

w← w+ υ[Rt+1 + γq̂(St+1, At+1,w)− q̂(St, At,w)]∇q̂(St, At,w) (2.14)

where υ is the step size.

Then, the approximated function can be used to derive a policy by choosing the



2.1 Reinforcement Learning 20

actions with the most value.

So far all RL methods presented in this section revolve around estimating action

values and, then, choosing the best action according to these values. However, this can

be problematic when dealing with continuous action spaces instead of discrete ones. In

this case, the operation performed to find the action that maximizes the value of a given

state can be complex and computationally expensive. To bypass this issue, one can use

a different approach to solve RL problems: it is possible to derive a policy by directly

searching the space of all possible policies, through the so-called policy gradient methods.

These methods parameterise a policy π with a set of weights θ, such that:

π(a|s,θ) = Pr{At = a|St = s,θt = θ} (2.15)

Then the policy weights can be updated according to a metric of performance

J(θ). Stochastic gradient ascent can be performed on the weights, such that each weight

is adjusted towards the direction that maximizes the value of J(θ):

θ ← θ + υ∇J(θ) (2.16)

When defining J(θ) to be equal to the value of the initial state, it is possible to

derive an expression that is proportional to the gradient ∇J(θ). In fact, there are many

derivations that lead to slightly different updates for the policy weights. The simplest

policy gradient algorithm, REINFORCE, uses the following proportional relation:

∇J(θ) ∝ Eπ
[
Gt
∇π(At|St,θt)
π(At|St,θt)

]
(2.17)

Thus, performing the update:

θ ← θ + υGt∇ ln π(At|St,θt) (2.18)



2.2 Deep Reinforcement Learning 21

2.2 Deep Reinforcement Learning

Deep reinforcement learning is the intersection of Deep Learning (DL) and RL. Combining

neural networks (NN) with reinforcement learning methods is not a new idea. In fact, it

was already explored decades ago, using Q-learning and a neural network to approximate

its action values (RUMMERY; NIRANJAN, 1994). However, in recent years, with the

advent of DL and the increase in computational power, as well as the development of

techniques to improve stability of RL agents using NN as function approximators, this

combination has become much more effective, being able to display some impressive feats

(MNIH et al., 2015).

2.2.1 Neural Networks

Neural networks are formed by several units, called neurons. Each unit receives a series

of input signals and outputs one singular value. The output of each neuron is calculated

by multiplying each input signal with a respective weight, then summing all the results

of the multiplications. Essentially producing a linear combination of the input signals.

A bias term is also added to final the summation. Finally, the summed value is given as

input to what is called an activation function and that produces the output of the entire

neuron. Mathematically, the output of a neuron k can be expressed through the following

equation (HAYKIN, 2009):

yk = σ

(
m∑
j=1

wkjxj + bk

)
(2.19)

where x1, . . . , xm are the input signals, wk1, . . . , wkm are the neuron weights, bk is the bias

term and σ is the activation function.

In turn, a NN is collection of multiple neurons, each one with its own set of

weights. These units are organized into layers, which are arranged in sequential order.

In the most common type of NN, called a feedfoward fully connected neural network

(GOODFELLOW; BENGIO; COURVILLE, 2016), a neuron from layer l receives as input

the output of all the neurons from layer l − 1. A neural network with several layers is

called a deep neural network (DNN) (POUYANFAR et al., 2018).



2.2 Deep Reinforcement Learning 22

The neuron operations of a fully connected NN can be expressed compactly

through the use of vector notation. Let h(l−1) be the vector containing the output of

all neurons from a layer l − 1. Then, a neuron k from layer l with a set of weights repre-

sented by the vector wk, a bias term bk and an activation function σ, computes its output

h
(l)
k according to the following equation:

h
(l)
k = σ(wT

kh
(l−1) + bk) (2.20)

Figure 2.2: Example of a standard feedfoward deep neural network.

Given this architecture, it is possible to train a NN f parametrized by θ to

approximate a function f ∗ that maps inputs x to an outputs y. To do so, a cost function J

is defined. J(ŷ, y) is a distance measure between the output of the true function y = f ∗(x)

and the output of the neural network ŷ = f(x;θ). Thus the weights of the network can

be updated iteratively, by performing gradient descent based on J(ŷ, y). To this end, an

algorithm called backpropagation is used (RUMELHART; HINTON; WILLIAMS, 1986).



2.2 Deep Reinforcement Learning 23

Backpropagation allows for the computation of partial derivatives of the cost function in

respect to all weights in the network, by taking advantage of the chain rule of calculus.

In RL, DNNs are used to approximate value functions and as parametrized dif-

ferentiable policies, very much like it was mentioned in Section 2.1. However, many of

theoretical guarantees of convergence of classic RL algorithms do not apply to deep re-

inforcement learning. As such, this combination is far from trivial and finding different

ways to improve the stability of these algorithms has been an active topic of research ever

since the popularization of deep learning techniques in the 2010s.

Today, there already exist a set of key DRL algorithms that accomplish this

through different manners. (MNIH et al., 2015) and (HAUSKNECHT; STONE, 2015) are

based on action value estimation, whereas (SCHULMAN et al., 2015) and (SCHULMAN

et al., 2017) are some of the policy gradient methods. (HAARNOJA et al., 2018a) and

(MNIH et al., 2016) are also policy gradient methods, but, additionally, they make use

of action values in the policy update. In this case, the action value estimator is called

the “critic”, while the policy is the “actor”; consequently, these approaches are known as

actor-critic methods.

2.2.2 Soft Actor-Critic

Soft actor-critic (SAC)(HAARNOJA et al., 2018a; HAARNOJA et al., 2018b) is an off-

policy algorithm built on top of the reinforcement learning maximum entropy framework.

In this setting, the agent aims to maximize the tradeoff between reward and entropy.

That is, maximize the expected reward while acting as randomly as possible. This is a

way to tackle the exploration and exploitation tradeoff mentioned in Section 2.1. The

algorithm is off-policy, because it uses a replay buffer D to store agent transitions from

the environment. Then, it updates both the it’s action value estimate and the policy by

sampling transitions from this replay buffer.

Given a random variable X distributed according to a probability mass or density

function P , the entropy of P can be calculate as:

H(P ) = E [− logP (X)] (2.21)



2.2 Deep Reinforcement Learning 24

Therefore, in the maximum entropy framework, the agent receives an additional

bonus to the reward at each time step, that is proportional to the entropy of the policy.

By taking this into account, a new version of the action value Bellman equation can be

derived:

qπ(s, a) = Eπ [R + γ(qπ(s
′, a′)− α log π(a′|s′))] , (2.22)

where α is a coefficient that regulates the trade-off between entropy and reward. It is

possible, then, to sample in order to approximate the true value qπ. Thus, the SAC critic

can be trained with the following loss function:

JQ(θ) = Es,a,r,s′∼D

[
(Qθ(s, a)− Q̂(s, a))2

]
(2.23)

with:

Q̂(s, a) = r + γ(Qθ(s
′, a′)− α log π(a′|s′)), a′ ∼ π(·|s′) (2.24)

where Qθ represents the neural network used to approximate the true action values and

is parameterized by weights θ.

Likewise, the actor’s loss function can be defined as:

Jπ(ϕ) = Es∼D,a∼πϕ [α log πϕ(a|s)−Qϕ(s, a)] (2.25)

It is still not possible to update policy π based on the equation above. This

occurs because both a and π are dependent on the parameters ϕ. To solve this problem it

is possible to apply the reparameterization trick (KINGMA; WELLING, 2013) to rewrite

the equation into an expectation over noise, which allows us to estimate the gradient of

Jπ by sampling:

Jπ(ϕ) = Es∼D,ϵ∼N [α log πϕ(fϕ(ϵ; s)|s)−Qθ(s, fϕ(ϵ; s))] (2.26)

Lastly, it is important to note that SAC also applies other tricks to improve

stability, such as double Q-learning networks (FUJIMOTO; HOOF; MEGER, 2018) and

the use of target networks (MNIH et al., 2015). These techniques were omitted in the



2.3 Distributional Reinforcement Learning 25

equations above for simplicity sake, but they play a important role with respect to the

good performance achieved by the overall method.

2.3 Distributional Reinforcement Learning

As seen previously, classic reinforcement learning is concerned with creating a policy that

is able to maximize the expected return. Thus, its only natural to ponder about what

would happen if, instead of taking only the expect return into account, the full return

distribution was considered. Intuitively, the distribution contains far more information

than the singular scalar value. In practice, its been shown that the use of distributional

reinforcement learning increases both sample efficiency and performance of RL agents

(HESSEL et al., 2018).

To extend RL to the distributional case, a distributional version of the Bellman

equation can be defined:

Z(s, a)
D
= R(s, a) + γZ(S ′, A′) (2.27)

where D denotes equality between probability laws (BELLEMARE; DABNEY; MUNOS,

2017). In Equation 2.27, Z(s, a) is the distribution of possible returns when action a is

chosen in state s. This distribution depends on the random variable of the reward R and

return distribution Z(S ′, A′), where S ′ and A′ are the random variables of the next state

and the next action, respectively.

Equation 2.27 can be used to estimate the return distribution. However, com-

putational challenges are presented when trying to perform distributional reinforcement

learning in the first place. As the distribution of returns can be shaped in quite a complex

way, its necessary to resort to approximation in order to represent it with a finite num-

ber of parameters. Additionally, multiple metrics can be used as proxy for the distance

between two distributions.

How the distributions are parameterized is often a key distinction between al-

gorithms. For instance, C51 (BELLEMARE; DABNEY; MUNOS, 2017) used a discrete

distribution parameterized by N ∈ N and Vmin, Vmax ∈ R, where the support is a set

of atoms {zi = Vmin + i∆z : 0 ≤ i < N},∆z = Vmax−Vmin
N−1

. Meanwhile, both QR-DQN



2.3 Distributional Reinforcement Learning 26

(DABNEY et al., 2018b) and IQN (DABNEY et al., 2018a) approach the problem by ap-

proximating the quantile function of the return distribution, the inverse of the cumulative

distribution function (c.d.f.).

2.3.1 Implicit Quantile Network

Implicit quantile network (IQN) is a distributional reinforcement learning algorithm based

on deep Q-learning. It trains an implicit parametric function to reparameterize samples

from a base distribution, usually the uniform distribution U([0, 1]), to the quantile values

of a target distribution, in this case Z(s, a). In this way, by approximating the quantile

function with F−1
Z (τ), sampling τ ∼ U([0, 1]) and applying F−1

Z would equate to sampling

the original return distribution: F−1
Z (τ)(s, a) ∼ Z(s, a).

To do so, the p-Wasserstein distance is employed to measure the difference be-

tween two distributions U and V:

Wp(U, V ) =

(∫ 1

0

|F−1
U (ω)− F−1

V (ω)|pdω
) 1

p

(2.28)

Where F is the c.d.f.

In IQN’s case, the Wasserstein distance is approximated by the Huber quantile

regression loss (HUBER, 1992), with a threshold κ:

ρκτ = |τ − I{δi,j < 0}|L(δi,j)
κ

, with (2.29)

L(δi,j) =


1
2
δ2i,j if |δi,j| < κ

κ(|δi,j| − 1
2
κ) otherwise

(2.30)

From the distributional Bellman equation, it is possible to derive the sampled

temporal difference error at time step t, for two i.i.d. samples τ, τ ′ ∼ U([0, 1]) and a

policy π:

δτ,τ
′

t = rt + γF−1
Z (τ ′)(st+1, π(st+1))− F−1

Z (τ)(st, at) (2.31)



2.4 Constrained Markov Decision Process 27

Thus, IQN trains its action-state pair return distribution function with the fol-

lowing loss function:

J(st, at, rt, st+1, at+1) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(δ
τi,τ

′
j

t ) (2.32)

where N and N ′ correspond to the number of samples τ, τ ′ ∼ U([0, 1]) used to estimate

the loss.

2.4 Constrained Markov Decision Process

The reward hypothesis posits the following: “That all of what we mean by goals and

purposes can be well thought of as the maximization of the expected value of the cu-

mulative sum of a received scalar signal (called reward).” (SUTTON; BARTO, 2018).

Although, it seems like a particularly bold assumption, it is very a important statement

to reinforcement learning in general. In case the validity of the hypothesis was to be

proven, it would signify that most, if not all, tasks could be formulated as a reinforcement

learning problem, at least theoretically. In practice, however, RL practitioners have found

difficulties in precisely expressing desired complex behavior through the use of a reward

function, with reward shaping becoming an area of research of its own (NG; HARADA;

RUSSELL, 1999).

In the case of safe reinforcement learning problems, state-of-the-art algorithms

avoid dealing with the difficulties of shaping the reward function to express safety con-

straints. Instead, these algorithms rely on the constrained Markov decision process

(CMDP) formalism. This allows for a clear separation between the task objective that

the agent is trying to optimize and the safety violations that the agent should aim to

avoid. The framework also provides an easy way to regulate the tradeoff between these

two, often conflicting, goals. We describe the mathematical details as follows.

In a CMDP, at every time step t, in addition to the reward signal rt, the agent

also receives a vector containing K different cost signals ckt . In this setting, the agent

aims to find the optimal policy π∗, i.e. the policy that maximizes some metric Jr(π).

Where Jr(π) is some function that depends on the reward induced from following policy



2.4 Constrained Markov Decision Process 28

π. However, unlike in MDPs, the set of possible policies Π is reduced to ΠC , such that

only feasible policies are considered, meaning policies that satisfy a set of constraints.

Thus, the CMDP objective is the following:

π∗ = arg max
π∈ΠC

Jr(π) (2.33)

And, the set of constraint-satisfying policies can be defined as:

ΠC = {π : Jci(π) ≤ di, i = 1, .., k} (2.34)

where Jci is some function that depends on the cost ci induced from following

policy π, and di is a hyperparameter that specifies a desired upper limit for Jci(π).

Often, when dealing with safe reinforcement learning, a single cost function c is

used to express unsafety and the hyperparameter d is referred to as the budget. Addition-

ally, Jr(π) is defined to be the expected return (from Equation 2.2) achieved by following

policy π and starting from the initial state s0:

Jr(π) = vrπ(s0) (2.35)

and Jc(π) is defined as the expected cost return from the initial state s0:

Jc(π) = vcπ(s0) (2.36)

where the expected cost return vcπ is defined in an analogous manner to vrπ:

Gc
t = Ct+1 + γcCt+2 + γ2cCt+3 + ...+ γkcRT (2.37)

vcπ(s) = Eπ[Gc
t | St = s] (2.38)

and γc is the discount factor for the cost signal.

Thus, safe RL algorithms commonly use neural networks to approximate both the

reward action value Qr and the cost action value Qc. In the case of actor-critic methods,

Qc is often referred to as a safety critic.



29

3 Related Work

In this chapter we present some of the work that focus on creating reinforcement learning

agents that can learn and act safely within an environment, according to some safety

measure. To this end, all of the following methods use the constrained reinforcement

learning framework. Some focus on learning from fully observable states, while others

aim to create methods that can work when dealing with partial observability. Each

contribution is described as follows.

Ray, Achiam e Amodei (2019) made two main propositions. Fist, the authors

suggested the use of constrained Markov decision process (CMDP) (ALTMAN, 1999) as

the main formalism for safe reinforcement learning. CMDPs are discussed in Section

2.4. Second, they developed a benchmark suit to evaluate performance of reinforcement

learning agents in safe exploration tasks. The benchmark suit, called Safety Gym, contains

a series of different robots (the agent’s “body”), tasks and hazards, which can be combined

to form environments with a varying level of difficulty for RL agents. Figure 3.1 shows

some examples of these environments.

(a) PointGoal1 (b) CarGoal1 (c) DoggoGoal1

Figure 3.1: Different Safety-Gym environments. In ”Goal” tasks, the agent has to reach
the goal (green cilinder) while trying to avoid hazards (blue circles and blue cube)

Furthermore, it was also provided in (RAY; ACHIAM; AMODEI, 2019) baselines

versions of the trust region policy optimization (TRPO) (SCHULMAN et al., 2015) and

proximal policy optimization (PPO) (SCHULMAN et al., 2017) algorithms adapted to



3.1 Fully Observable Safe Reinforcement Learning 30

the CMDP setting by the use of the Lagrange multiplier method (BERTSEKAS, 2014).

In conclusion, (RAY; ACHIAM; AMODEI, 2019) builds some foundations for a lot of

subsequent work in the safe reinforcement learning field, by standardizing evaluation of

safe RL algorithms.

3.1 Fully Observable Safe Reinforcement Learning

The setting where the agent gets direct access to the environment’s true state is called

the fully observable setting. Likewise, when the agent receives, instead, an observation

that does not contain every information relevant to describe the environment’s dynamics,

the setting is described as partially observable and is formalized by a partially observable

Markov decision process (POMDP) (KAELBLING; LITTMAN; CASSANDRA, 1998).

In DRL, some methods are built based on the full observability assumption, while others

relax this assumption and develop techniques to specifically mitigate partial observability.

Throughout this section we talk about safe RL approaches that do the former.

Constrained policy optimization (CPO) (ACHIAM et al., 2017) performs policy

search by augmenting the objective of the usual local policy search with CMDP con-

straints. In this context, the current policy πk is updated to the next policy πk+1 by

searching the space of all policies Πθ that can be represented through the parameters θ.

This is done while also adhering to some constraints:

πk+1 = argmax
π∈Πθ

Jr(π)

s.t. Jci(π) ≤ di, i = 1, . . . ,m

D(πk, πk+1) < υ

(3.1)

where D is some distance measure and υ is a step size. The main idea of local policy

search is to update the policy’s parameters without drastically changing its distribution

at each time. Local search improves the stability of policy search methods and enables

then to function in high dimensional function approximation settings.

With the augmented objective, Achiam et al. (2017) derive an approximated

update that encounters a local feasible policy most of the time. Whenever this does not



3.1 Fully Observable Safe Reinforcement Learning 31

happen, and the new policy πk+1 is not feasible (that is, it does not satisfy all of the

CMDP constraints), a recovery step is performed to bring the policy back to feasibility

bounds.

Worst-case soft actor-critic (WCSAC) (YANG et al., 2023) is a SAC based algo-

rithm that uses a distributional safety critic to produce risk-averse behavior. The authors

propose two different versions of the algorithm: the first version estimates Qc using a

Gaussian approximation and the second estimates Qc using a safety critic based on the

IQN algorithm from Section 2.3. WCSAC-IQN outperforms its counterpart for increas-

ingly complex environments, by being able to develop safe policies more consistently.

To perform risk-averse constrained RL, the upper tail of the estimated distribu-

tion is used. This is represented by the conditional Value-at-Risk (CVaR) (ROCKAFEL-

LAR; URYASEV et al., 2000). To do so, a new hyper parameter is introduced called

risk level, which we is defined here as β ∈ (0, 1]. The smaller the value of β, the more

pessimistic the agent becomes, while β = 1 corresponds to the risk-neutral case. Thus,

the CVaR metric, for a cost signal c with random variable C that follows the return

distribution induced by c when following policy π, is defined as:

Γπ(s, a, β) = CV aRβ
π(C) = E[C|C ≥ F−1

C (1− β)] (3.2)

where FC is the c.d.f of the cost return distribution and, thus, F−
C 1 is the quantile function

of the same distribution.

When using IQN as the safety critic, the CVaR metric can be approximated by,

instead of sampling from a uniform distribution between zero and one (τ ∼ U([0, 1])),

sampling from the uniform distribution between 1− β and one (τ ∼ U([1− β, 1])). Thus,

to estimate CVaR with K i.i.d. samples of τ ∼ U([1− β, 1]):

Γπ(s, a, β) =
1

K

K∑
k=1

F−1
C (τ)(s, a) (3.3)

Consequently, WCSAC-IQN augments the original SAC actor loss from equation

2.25:



3.2 Partially Observable Safe Reinforcement Learning 32

Jπ(ϕ) = Es∼D,a∼πϕ [α log πϕ(a|s)−Qϕ(s, a)− λΓπ(s, a, β)] (3.4)

where λ is dynamically adjusted based on the following loss:

Js(λ) = Es∼D,a∼πϕ [λ(d− Γπ(s, a, β))] (3.5)

by the use of the Lagrange multiplier method. Where d is the budget. In this way, when

d ≥ Γπ(s, a, β) the value of lambda will be decreased, giving less weight to the CVaR

term in the actor loss; otherwise, lambda will increase, emphasizing the safety term and

inducing the agent into looking for a safer policy. The reward critic is updated according

to the common SAC loss, presented in Equation 2.23, while the safety critic follows the

IQN loss from Equation 2.32.

3.2 Partially Observable Safe Reinforcement Learn-

ing

As RL applications increasingly approach real world scenarios, the challenge of partial

observability becomes ever more present. To study the partial observable setting with

high dimensional sensory inputs in safe reinforcement learning, the methods in this sec-

tion modify the usual Safety-Gym observation. By default, agents receive multiple sensor

inputs, such as joint position and velocity sensors, the robot sensors (accelerometer, gyro-

scope, magnetometer, and velocimeter), compasses for pointing to goals, and lidar (where

each lidar sensor perceives objects of a single kind). The modified observation, however,

takes a first-person view in respect to the robot perspective. It’s easy to see why this

would make the learning process harder: with the first-person view, the agent does not

have information about the goal or hazard locations at every time step. Furthermore, be-

fore even learning to execute the task, the agent has to learn how to identify the relevant

objects in the environment through the pixels values it receives. Figure 3.2 presents some

examples of the agent’s view.

To tackle this problem, the Lagrangian Model-Based Agent (LAMBDA) is pro-



3.2 Partially Observable Safe Reinforcement Learning 33

(a) PointGoal1 (b) CarGoal1 (c) DoggoGoal1

Figure 3.2: Modified observations received by the agent at each Safety-Gym environment

posed in (AS et al., 2022). LAMBDA infers a Bayesian world model that is, then, used

to simulate transitions and train the agent. Model-based techniques are used to improve

sample efficiency of RL agents (DEISENROTH; RASMUSSEN, 2011), which is even more

crucial in safety concerned task, as drawing experience from the model, instead of the real

environment, is away to avoid general damage caused by the agent during exploration in

real-world applications. Thus, by starting with a dataset of transitions D, the method

aims to fit a model p(st + 1|st, at, θ) with parameters θ.

LAMBDA creates its world model in a similar manner to the Recurrent State

Space Model (RSSM) from (HAFNER et al., 2019). First, it is assumed that, at each time

step, the agent receives an observation that depends on the true state of the environment

ot ∼ p(·|st). Next, an inference network with parameters ϕ is trained to approximate

the posterior distribution sη:η+H ∼ qϕ(·|oη:η+H , aη−1:η+H−1), where H is the predefined

sequence horizon and si:j represents the sequence of states received from the environment

from time step i to time step j, the same is valid for ai:j and oi:j. The network qϕ infers

a latent state, which is used as input to the policy. A second model is also trained to

approximate the predictive distribution p(sη:η+H |sη−1, aη−1:η+H−1, θ); this is later used to

generate transitions. Additionally, LAMBDA estimates uncertainty in its world model by

taking a prior on the model parameters and maintaining a posterior over these parameters

via approximate Bayesian inference θ ∼ p(θ|D).

LAMBDA trains both its reward and cost critic using TD(λ) technique (SUT-

TON; BARTO, 2018), a way to trade-off bias and variance by mixing bootstrapping with



3.2 Partially Observable Safe Reinforcement Learning 34

Monte-Carlo estimation. Thus, they are updated according to the following loss function:

Jv(ψ) = Eπ,p(sη:η+H |sη−1,aη−1:η+H−1,θ)

[
1

2H

η+H∑
t=η

(vψ(st)−Vλ(st))
2

]
(3.6)

The policy update is performed based on the augmented Lagrangian method

(WRIGHT, 2006):

Jπ(ξ) = Eπ,p(sη:η+H |sη−1,aη−1:η+H−1,θ)

[
1

H

η+H∑
t=η

−Vλ(st)

]
+

C∑
i=1

Ψ(π, λk, µk) (3.7)

where Ψ is a function that depends on the TD(λ) value of the cost signal Vc
λ.

Lastly, the authors propose the use of an optimistic pessimistic approach. In

practice, when collecting transitions to perform the updates to the critics and the pol-

icy, they sample M different set of weights θk ∼ p(θ|D) from their Bayesian model.

For each θk, H transitions are sampled from the model parameterize by θk: sη:η+H ∼

p(sη:η+H |sη−1, aη−1:η+H−1, θk). These transitions are used to estimate M different values

for the TD(λ) of the reward and the cost: Vk
λ. Then, the maximum value of each set of

estimates is used to perform the algorithm’s updates. The main idea is to use the maxi-

mum reward return estimate to be optimistic in relation to pursuing high reward, while

also being pessimistic by assuming the maximum possible cost return over the transitions

generated by the M sets of weights θ.

(HOGEWIND et al., 2023) is another work that aims at solving partially ob-

servable problems in the context of safe reinforcement learning. The authors propose a

new version of the Stochastic Latent Actor-Critic (SLAC) algorithm (LEE et al., 2020)

called Safe SLAC, which is adapted to work under the CMDP framework. SLAC is an

actor-critic method based on the SAC algorithm. It assumes partial observability and, in

order to infer the true state of the environment zt, a sequential latent variable model is

defined. Then, by predicting rewards and the observations based on the true hidden state,

the model can be trained to find zt, such that the likelihood of ot and rt are maximized.

This is done via variational inference (KINGMA; WELLING, 2013). In addition to the

reward and observation, the Safe SLAC model is also trained to accurately predict the



3.2 Partially Observable Safe Reinforcement Learning 35

cost ct.

In practice, the variable zt is factorized into two stochastic variables z1t and z2t .

Consequently, the generative part of the latent variable model with parameters ψ consists

of the following distributions:

z11 ∼ p(z11)

z21 ∼ pψ(z
2
1|z11)

z1t+1 ∼ pψ(z
1
t+1|z2t , at)

z2t+1 ∼ pψ(z
2
t+1|z1t+1, z

2
t , at)

ot ∼ pψ(ot|z1t , z2t )

rt ∼ pψ(rt|z1t , z2t , at, z1t+1, z
2
t+1)

(3.8)

While the posterior contains the following factorization:

z11 ∼ qψ(z
1
1|o1)

z21 ∼ pψ(z
2
1|z11)

z1t+1 ∼ qψ(ot+1|z2t , at)

z2t+1 ∼ pψ(z
2
t+1|z1t+1, z

2
t , at)

(3.9)

In (HOGEWIND et al., 2023), the authors augments the original SLAC generative

model from Equation 3.8 with the conditional distribution ct ∼ pψ(ct|z1t , z2t , at, z1t+1, z
2
t+1).

As the cost is always binary in Safety-Gym tasks, the conditional distribution is modeled

as a Bernoulli distribution. Then, the latent model is trained with the following objective:

JM(ψ) = Ez1:η+1∼qψ


η∑
t=0

− log pψ(ot+1|zt+1)

− log pψ(rt+1|zt+1)

− log pψ(ct+1|zt+1)

+DKL(qψ(zt+1|ot, zt, at)||pψ(zt+1|zt, at))


(3.10)

where DKL is the Kullback-Leibler divergence (COVER, 1999). The reward and cost

critic are updated in a similar manner to the original SAC critic (see Equation 2.23).



3.2 Partially Observable Safe Reinforcement Learning 36

Finally, Safe SLAC actor loss is given by:

Jπ(ϕ) = Ez1:η+1∼qψ

Eaη+1∼πϕ


α log πϕ(aη+1|zη+1)

−Qr
θ(zη+1, aη+1)

+λQc
ξ(zη+1, aη+1)



 (3.11)

where Qr
θ is the reward critic and Qc

ξ is the safety critic.

In this work, we propose a method that relies on distributional reinforcement

techniques, like (YANG et al., 2023), but, in contrasts, focus on solving tasks with high

degree of partial observability, like (AS et al., 2022) and (HOGEWIND et al., 2023). We

describe our method in detail in the following chapter.



37

4 Distributional Safe Stochastic Latent

Actor-Critic

In the same vain as (AS et al., 2022) and (HOGEWIND et al., 2023), we propose a

safe reinforcement learning algorithm to operate in the CPOMDP setting. Our approach

is closely related to (HOGEWIND et al., 2023) in the sense that it is based on SLAC.

The main difference is the use of a distributional safety critic instead of a expectation

based one. Thus, we call the proposed approach as distributional safe stochastic latent

actor-critic (DS-SLAC). We describe DS-SLAC in detail as follows.

DS-SLAC relies on the same latent variable model as (HOGEWIND et al., 2023)

to infer the true hidden state of the environment zt given an observation ot. It does so using

variational inference (KINGMA; WELLING, 2013) to optimize the model parameters in

order to fit the observed data. The architecture is given by the following conditional

probabilities:

z11 ∼ p(z11)

z21 ∼ pψ(z
2
1|z11)

z1t+1 ∼ pψ(z
1
t+1|z2t , at)

z2t+1 ∼ pψ(z
2
t+1|z1t+1, z

2
t , at)

ot ∼ pψ(ot|z1t , z2t )

rt ∼ pψ(rt|z1t , z2t , at, z1t+1, z
2
t+1)

ct ∼ pψ(ct|z1t , z2t , at, z1t+1, z
2
t+1)

(4.1)

z11 ∼ qψ(z
1
1|o1)

z21 ∼ pψ(z
2
1|z11)

z1t+1 ∼ qψ(ot+1|z2t , at)

z2t+1 ∼ pψ(z
2
t+1|z1t+1, z

2
t , at)

(4.2)

where Equation 4.1 corresponds to generative part of the model and Equation 4.2 corre-



4 Distributional Safe Stochastic Latent Actor-Critic 38

sponds to the posterior portion. Given this architecture it is possible to train the latent

variable model according to:

JM(ψ) = Ez1:η+1∼qψ


η∑
t=0

− log pψ(ot+1|zt+1)

− log pψ(rt+1|zt+1)

− log pψ(ct+1|zt+1)

+DKL(qψ(zt+1|ot, zt, at)||pψ(zt+1|zt, at))


(4.3)

This is the same loss as the one used to train the model in (HOGEWIND et al., 2023).

As DS-SLAC is also a SAC based-method, a reward critic is trained according

to the maximum entropy framework described in Section 2.2.2. In this sense, the reward

critic loss is similar to the one presented in Equation 2.23. It differs, however, in the fact

that the hidden state produced by the latent variable model is used as input to the critic

function. Thus, the loss used to update the parameters θ from the reward critic Qr
θ is

defined as:

JQr(θ) = Eat,rt∼D,zt,zt+1∼qψ

[
(Qθ(zt, at)− Q̂(zt, at))2

]
(4.4)

where:

Q̂(zt, at) = rt + γ(Qθ(zt+1, at+1)− α log π(at+1|zt+1)), at+1 ∼ π(·|zt+1) (4.5)

and D is the replay buffer.

As mentioned before, a safety critic is also trained. Our reasons for adopting a

distributional perspective on the safety critic are twofold. First, inspired by the authors

of (YANG et al., 2023), we believe that it is particularly interesting to be able to produce

risk-averse behavior in the context of safe reinforcement learning. Second, the use of a

distributional safety critic can increase the accuracy of the predictions of cost returns,

which, in turn, allows for the agent to more accurately trade-off reward and cost in the

CMDP setting.

Consequently, DS-SLAC estimates the cost return distribution with a implicit

quantile network discussed in section 2.3.1. For brevity, we define Qc
ξτ as the function

parameterized by ξ that approximates F−1
Zc

(τ), where Zc is the cost return distribution



4 Distributional Safe Stochastic Latent Actor-Critic 39

and FZc is the c.d.f. of this distribution. In this manner, we train Qc
ξτ by sampling N

and N ′ samples of τ, τ ′ ∼ U([0, 1]) and estimating IQN the loss according to:

JQc(ξ) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(δ
τi,τ

′
j

t ), where (4.6)

δτ,τ
′

t = rt + γQc
ξτ ′(zt+1, at+1)−Qc

ξτ (zt, at), at+1 ∼ πϕ(·|zt+1) (4.7)

and ρκτ is the Huber quantile regression loss described in equation 2.29.

Through estimating the cost return distribution and the expected reward return,

the policy update can be performed according to:

Jπ(ϕ) = Ezt∼qψ ,at∼πϕ


α log πϕ(at|zt)

−Qr
θ(zt, at)

+λQc
ξ(zt, at)

 (4.8)

with

Qc
ξ(zt, at) =

1

K

K∑
k=1

Qc
ξτ (zt, at) (4.9)

where K is the number of i.i.d. samples τ ∼ U([0, 1]) used to estimate Qc
ξ(zt, at), α

is the parameter used to regulate the trade-off between reward and entropy, and λ is

the Lagrange multiplier that, in turn, regulates the trade-off between reward and cost

constraint.

Similarly to (HOGEWIND et al., 2023), we find during our preliminary experi-

ments that updating the Lagrange multiplier with off-policy data (i.e., by sampling from

the replay buffer D) results in high instability during learning, often leading the agent to

developing an unsafe policy. We found no other way of mitigating this stability besides

updating the Lagrange multiplier with on-policy data, like it is done in (HOGEWIND et

al., 2023). For (HOGEWIND et al., 2023), this solution works well. In our case, however,

this is particularly undesirable, as it prevents us from performing risk-averse updates by

using the CVaR metric to update the Lagrange multiplier, as it is done by (YANG et al.,

2023) and represented in equation 3.5. Thus, the update for the Lagrange multiplier is

performed according to the following loss:



4 Distributional Safe Stochastic Latent Actor-Critic 40

Js(λ) = Eπ

[
λ

T∑
t=1

ct − d

]
(4.10)

where ct is the cost induced by following policy π and d is the budget.

Thus, DS-SLAC works in the following manner. First, the replay buffer D is

initialized by interacting with the environment and selecting actions according to a random

policy forWp environments steps, in this wayWp transitions are stored in the replay buffer

D. Next, the latent variable model is pre-trained by sampling the transitions collected

with the random policy from the replay buffer (ot, at, rt, ct) ∼ D; this is performed for Wt

times.

Afterwards the algorithm alternates between multiple iterations of two processes.

The first consists of the agent interacting with the environment by selecting an action at

based on the latent state zt that is inferred by the latent model according to previous latent

state zt−1 and current observation ot. The selected action is executed in the environment

and is stored in the replay buffer along with the received observation, reward and cost

(ot+1, rt+1, ct+1). During this step, the Lagrange multiplier is updated, since it needs to

be on-policy updated, as mentioned previously.

The second process consists of sampling a transition from the replay buffer

(ot, at, rt, ct) ∼ D, then calculating the losses for the latent model, reward critic, cost

critic and policy based on the sampled transition and according to the respective loss

equations. Next, the respective weights are updated by performing a single gradient step.

Lastly, the target networks for the reward and safety critic are also updated through

exponential averaging (MNIH et al., 2015).

The alternation of these two process can occur for as long as desired, essentially,

until the agent develops a good enough policy. In practice, a maximum number of desired

environment interactions (number of time the first process is repeated) is defined and when

this number is reached training stops. This is done to evaluate the agent sample efficiency,

i.e. its performance relative to the number of samples of environment interactions used

for learning.

Finally, DS-SLAC is described in detail in Algorithm 1, where θ1 and θ2 represent

the double Q-learning networks (FUJIMOTO; HOOF; MEGER, 2018), while θ̄1, θ̄2 and



4 Distributional Safe Stochastic Latent Actor-Critic 41

ξ̄ are the target networks (MNIH et al., 2015).

Algorithm 1: Distributional Safe Stochastic Latent Actor-Critic

Hyperparameters: Wt,Wp, N,N
′, K

1 Initialize D by following a random policy with Wp transitions
2 for i=1 to Wt do
3 (ot, at, rt, ct) ∼ D

4 Update ψ according to Equation 4.3

5 end for
6 while not converged do
7 for each environment step do
8 at ∼ πϕ(at|zt)
9 Obtain (ot+1, rt+1, ct+1) by executing at

10 D← D ∪ (ot+1, at, rt+1, ct+1)
11 Update λ according to Equation 4.10

12 end for
13 for each gradient step do
14 (ot, at, rt, ct) ∼ D

15 Update ψ according to Equation 4.3
16 Update θ1 and θ2 according to Equation 4.4
17 Update ξ according to Equation 4.6
18 Update ϕ according to Equation 4.8
19 θ̄1 ← νθ1 + (1− ν)θ̄1
20 θ̄2 ← νθ2 + (1− ν)θ̄2
21 ξ̄ ← νξ + (1− ν)ξ̄
22 end for

23 end while



42

5 Computational Experiments

In practice, DS-SLAC collectsWp = 60K environments steps following a complete random

policy. Next, for Wt = 30K steps, the latent variable model is initialized based on the

collected information. Additionally, during the training of the policy, DS-SLAC uses 100

environment steps and 100 gradient steps, meaning it collects 100 environment interac-

tions and then performs 100 gradient updates, repeating this process until the maximum

number of environment steps is reached.

We perform our experiments in a subset of the SG6 benchmark from (RAY;

ACHIAM; AMODEI, 2019). Following As et al. (2022) and Hogewind et al. (2023), we

perform evaluation of each run as following: for each 25K environment steps, the agent

performance is measured by collecting E = 10 different episodes of length of Tep = 1000

with the current policy. Then, the undiscounted reward and cost return for each episode

are calculated and the mean of these metrics across all episodes represent the current

policy performance. In short, the reward performance is given by 1
E

∑E
e=1

∑Tep
t=1 rt and

the cost performance is given by 1
E

∑E
e=1

∑Tep
t=1 ct. The data used for evaluation is then

discarded and is not used for training.

Figure 5.1 presents the DS-SLAC learning curves for each Safety-Gym environ-

ment, generated by avaraging the performance of three different random seeds. Doted

lines indicate the final results for LAMBDA, CPO and TRPO-Lag that were reported by

As et al. (2022). Both CPO and TRPO-Lag learn directly from sensors, with 10 million

environment steps, meanwhile LAMBDA and DS-SLAC learn for 1 million environment

steps in PointGoal1, CarGoal1 and PointGoal2, and for 2 million steps in DoggoGoal1.

(HOGEWIND et al., 2023) does not report the results for Safe-Slac in a tabular form,

only through figures. As such, we do not include a direct comparison to Safe-Slac results.

Nevertheless, it is still possible to get a sense of the comparative performance of both

agents by looking at the graphics present here and in (HOGEWIND et al., 2023).

As proposed by (RAY; ACHIAM; AMODEI, 2019), we also present a comparison

of the normalized final reward and cost returns. Contrary to the learning curves, the



5 Computational Experiments 43

0.2 0.4 0.6 0.8 1.0
1e6

0

5

10

15

20

25

Po
in

tG
oa

l1
Reward Return

0.2 0.4 0.6 0.8 1.0
1e6

0

25

50

75

100

125

150

175

200

Cost Return

0.2 0.4 0.6 0.8 1.0
1e6

0

5

10

15

20

25

Ca
rG

oa
l1

0.2 0.4 0.6 0.8 1.0
1e6

0

20

40

60

80

100

120

140

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0

5

10

15

20

Do
gg

oG
oa

l1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0

25

50

75

100

125

150

175

0.2 0.4 0.6 0.8 1.0
1e6

2

0

2

4

6

8

10

12

14

Po
in

tG
oa

l2

0.2 0.4 0.6 0.8 1.0
1e6

0

50

100

150

200

250

300

350

DS-SLAC
Final LAMBDA

Final CPO
Final TRPO-Lag

Budget

Figure 5.1: Learning curves for DS-SLAC in four different Safety-Gym environments.



5 Computational Experiments 44

normalized results are based on the final reward return and cost return after 1 million

environment steps of training across all agents, including CPO and TRPO-Lag. The

normalization is performed based on the result of an unconstrained proximal policy op-

timization (PPO) (SCHULMAN et al., 2017) agent, also reported by (AS et al., 2022).

Then, for each agent with a reward return Ĵr(π) and a cost return Ĵc(π), and for the

reward return ĴPPOr and cost return ĴPPOc of the PPO agent, the normalized results are

given by:

J̄r(π) =
Ĵr(π)

ĴPPOr

J̄c(π) =
max(0, Ĵc(π)− d)

max(10−6, ĴPPOc − d)

(5.1)

The normalized metrics are presented in Figure 5.2 and in Table 5.1.

0 2 4
Normalized Reward Return

PointGoal1

CarGoal1

DoggoGoal1

PointGoal2

En
vi

ro
nm

en
ts

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized Cost Return

PointGoal1

CarGoal1

DoggoGoal1

PointGoal2

DS-SLAC
LAMBDA
CPO
TRPO-Lag

Figure 5.2: Normalized reward return and cost return.

Table 5.1: Normalized final results with each cell containing a tuple (J̄r(π), J̄c(π)).

TRPO-Lag CPO LAMBDA DS-SLAC

PointGoal1 0.51, 0.004 0.898, 0.302 1.077, 0.0 1.237, 0.0
CarGoal1 0.501, 0.0 1.579, 0.604 1.284, 0.0 1.555, 0.0

DoggoGoal1 -1.257, 0.227 -0.723, 0.643 5.400, 0.0 0.577, 0.0
PointGoal2 0.119, 0.059 0.306, 0.132 0.902, 0.0 0.014, 0.045

DS-SLAC demonstrates great performance in both PointGoal1 and CarGoal1.

For either one of these environments, DS-SLAC outperforms all other methods by attain-

ing the highest reward return, while also developing a safe policy.



5.1 Implementation Details 45

On the other hand, for both DoggoGoal1 and PointGoal2, although DS-SLAC

generates a safe policy for DoggoGoal1 and is very close to the budget value in the case

of PointGoal2, our algorithm does not perform well in respect to reward return. In part,

this is occurs because these environments are significantly harder for agents in general.

PointGoal2 contains a lot more hazards when compared to PointGoal1. Meanwhile, Dog-

goGoal1 robot has a large size, making it hard to avoid safety violations. Additionally, in

the DoggoGoal1 environment, the robot’s point of view shakes constantly when it moves,

inducing a high degree of partial observability. The difficulty of these environments can

also be attested by the performance of baseline algorithms, as seen in Figure 5.2.

Nevertheless, DS-SLAC still significantly underperforms when compared to both

LAMBDA and Safe SLAC. We hypothesize that, for the more complex environments,

DS-SLAC safety critic begins to overestimate cost values during training, eventually pre-

venting the agent to seek higher reward return as the policy objective becomes too heavily

influenced by the safety term. We believe one possible cause for this overestimation is

the use of on-policy data to update the Lagrange multiplier, while the safety term in the

actor loss is calculated in an off-policy manner. This factor can make the safety critic

update unstable.

5.1 Implementation Details

For the purpose of reproducibility, we make the code for DS-SLAC available at: ⟨https:

//github.com/tsmir/ds-slac⟩. The algorithm is implemented using the PyTorch library

(PASZKE et al., 2017) and the repository contains the code for interfacing with Safety-

Gym using first-person pixel observations.

In PointGoal1, CarGoal1 and PointGoal2, where 1 million environment steps

were used, DS-SLAC training took about 9 hours for each random seed. In DoggoGoal1,

as the number of environment steps was doubled, training took about 18 hours for each

random seed. All the experiments were performed on a machine equipped with a i5-10400F

processor and a RTX 3070 Ti GPU. Lastly, Table 5.2 presents all the hyperparameters

used to execute the algorithm.

https://github.com/tsmir/ds-slac
https://github.com/tsmir/ds-slac


5.1 Implementation Details 46

Table 5.2: Hyperparemeters for DS-SLAC.

Parameter Value

Action repeat 2
Image size 64× 64× 3

Image reconstruction noise 0.4
Length of sequences sampled from replay buffer 10

Reward discount factor 0.99
Cost discount factor 0.995

z1 size 32
z2 size 200

Replay buffer size 2 · 105
Latent model update batch size 32
Actor-critic update batch size 64
Latent model learning rate 1 · 10−4

Actor-critic learning rate 2 · 10−4

Safety Lagrange multiplier learning rate 2 · 10−4

Initial value for α 4 · 10−3

Initial value for λ 2 · 10−2

Wp 60 · 103
Wt 30 · 103
N 64
N ′ 64
K 64

Gradient clipping max norm 40
Target network update exponential factor 5 · 10−3



47

6 Conclusion

As reinforcement learning techniques increasingly transition from being applied to sim-

ulated environments to real world applications, the topic of avoiding damage, risks and

unwanted scenarios during an agent’s interaction with the environment becomes ever more

prevalent. As such, there exists a intrinsic motivation for developing methods that are

able to specify and enforce safety constraints in order to produce safe behavior.

Current state-of-the-art safe reinforcement learning algorithms work under the

constrained Markov decision process (CMDP) formalism to create agents that perform

well, even under a high degree of partial observability. We developed an algorithm named

DS-SLAC, that combines techniques of amortized variational inference used to mitigate

partial observability with a distributional reinforcement learning perspective. We ob-

tain comparable results to state-of-the-art methods in some Safety-Gym environments, as

DS-SLAC outperforms other algorithms in two of these environments. Additionally, we

identify some of the challenges in performing safe reinforcement learning with a distribu-

tional safety critic under the CPOMDP framework.

Future work can focus on improving performance of DS-SLAC in more complex

environments. We hypothesize that updating the Lagrange multiplier with on-policy data,

while using off-policy data to calculate the safety term in the policy update results in over-

estimation of the cost term used in the actor loss. As such, the cost term would dominate

the policy objective, preventing the agent from focusing on accumulating reward.

Furthermore, we believe that being able to perform risk-averse constrained rein-

forcement learning is desirable in the safety setting. This can be performed when using

distributional reinforcement learning to estimate the full cost return distribution, then

the agent’s behavior is updated according to “worst-case” scenarios, i.e. scenarios where

cost return assumes a value in the upper end of the distribution.

In DS-SLAC case, we were not able to perform risk-averse constrained reinforce-

ment learning, due to high instability when performing off-policy updates to the Lagrange

multiplier, i.e., the term that regulates the trade-off between adhering to safety constraints



6 Conclusion 48

and seeking a higher reward. Thus, encountering a way to perform the Lagrange mul-

tiplier update in an off-policy manner would unlock the ability to produce risk-averse

behavior and, consequently, is a promising path for future work.



BIBLIOGRAPHY 49

Bibliography

ACHIAM, J.; HELD, D.; TAMAR, A.; ABBEEL, P. Constrained policy optimization. In:
PMLR. International conference on machine learning. [S.l.], 2017. p. 22–31.

ALTMAN, E. Constrained Markov decision processes. [S.l.]: CRC press, 1999. v. 7.

ARULKUMARAN, K.; DEISENROTH, M. P.; BRUNDAGE, M.; BHARATH, A. A.
Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, IEEE,
v. 34, n. 6, p. 26–38, 2017.

AS, Y.; USMANOVA, I.; CURI, S.; KRAUSE, A. Constrained policy optimization via
bayesian world models. arXiv preprint arXiv:2201.09802, 2022.

BELLEMARE, M. G.; DABNEY, W.; MUNOS, R. A distributional perspective on rein-
forcement learning. In: PMLR. International conference on machine learning. [S.l.], 2017.
p. 449–458.

BELLEMARE, M. G.; DABNEY, W.; ROWLAND, M. Distributional reinforcement
learning. [S.l.]: MIT Press, 2023.

BERTSEKAS, D. P. Constrained optimization and Lagrange multiplier methods. [S.l.]:
Academic press, 2014.

BROWN, T.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J. D.; DHARIWAL, P.;
NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL, A. et al. Language models
are few-shot learners. Advances in neural information processing systems, v. 33, p. 1877–
1901, 2020.

CHEN, M.; TWOREK, J.; JUN, H.; YUAN, Q.; PINTO, H. P. d. O.; KAPLAN, J.;
EDWARDS, H.; BURDA, Y.; JOSEPH, N.; BROCKMAN, G. et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

COVER, T. M. Elements of information theory. [S.l.]: John Wiley & Sons, 1999.

DABNEY, W.; OSTROVSKI, G.; SILVER, D.; MUNOS, R. Implicit quantile networks
for distributional reinforcement learning. In: PMLR. International conference on machine
learning. [S.l.], 2018. p. 1096–1105.

DABNEY, W.; ROWLAND, M.; BELLEMARE, M.; MUNOS, R. Distributional rein-
forcement learning with quantile regression. In: Proceedings of the AAAI Conference on
Artificial Intelligence. [S.l.: s.n.], 2018. v. 32, n. 1.

DEISENROTH, M.; RASMUSSEN, C. E. Pilco: A model-based and data-efficient ap-
proach to policy search. In: Proceedings of the 28th International Conference on machine
learning (ICML-11). [S.l.: s.n.], 2011. p. 465–472.

FUJIMOTO, S.; HOOF, H.; MEGER, D. Addressing function approximation error in
actor-critic methods. In: PMLR. International conference on machine learning. [S.l.],
2018. p. 1587–1596.



BIBLIOGRAPHY 50

GARCIA, J.; FERNÁNDEZ, F. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, v. 16, n. 1, p. 1437–1480, 2015.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. ⟨http://www.deeplearningbook.org⟩.

HAARNOJA, T.; ZHOU, A.; ABBEEL, P.; LEVINE, S. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In: PMLR. Inter-
national conference on machine learning. [S.l.], 2018. p. 1861–1870.

HAARNOJA, T.; ZHOU, A.; HARTIKAINEN, K.; TUCKER, G.; HA, S.; TAN, J.;
KUMAR, V.; ZHU, H.; GUPTA, A.; ABBEEL, P. et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

HAFNER, D.; LILLICRAP, T.; FISCHER, I.; VILLEGAS, R.; HA, D.; LEE, H.; DAVID-
SON, J. Learning latent dynamics for planning from pixels. In: PMLR. International
conference on machine learning. [S.l.], 2019. p. 2555–2565.

HAUSKNECHT, M.; STONE, P. Deep recurrent q-learning for partially observable mdps.
In: 2015 aaai fall symposium series. [S.l.: s.n.], 2015.

HAYKIN, S. Neural networks and learning machines, 3/E. [S.l.]: Pearson Education India,
2009.

HESSEL, M.; MODAYIL, J.; HASSELT, H. V.; SCHAUL, T.; OSTROVSKI, G.; DAB-
NEY, W.; HORGAN, D.; PIOT, B.; AZAR, M.; SILVER, D. Rainbow: Combining im-
provements in deep reinforcement learning. In: Proceedings of the AAAI conference on
artificial intelligence. [S.l.: s.n.], 2018. v. 32, n. 1.

HOGEWIND, Y.; SIMAO, T. D.; KACHMAN, T.; JANSEN, N. Safe reinforcement learn-
ing from pixels using a stochastic latent representation. In: International Conference on
Learning Representations. [S.l.: s.n.], 2023.

HSU, P.-L.; ROBBINS, H. Complete convergence and the law of large numbers. Proceed-
ings of the national academy of sciences, National Acad Sciences, v. 33, n. 2, p. 25–31,
1947.

HUBER, P. J. Robust estimation of a location parameter. Breakthroughs in statistics:
Methodology and distribution, Springer, p. 492–518, 1992.

ISOM, J. D.; MEYN, S. P.; BRAATZ, R. D. Piecewise linear dynamic programming for
constrained pomdps. In: AAAI. [S.l.: s.n.], 2008. v. 1, p. 291–296.

KAELBLING, L. P.; LITTMAN, M. L.; CASSANDRA, A. R. Planning and acting in
partially observable stochastic domains. Artificial intelligence, Elsevier, v. 101, n. 1-2, p.
99–134, 1998.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement learning: A
survey. Journal of artificial intelligence research, v. 4, p. 237–285, 1996.

KINGMA, D. P.; WELLING, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

http://www.deeplearningbook.org


BIBLIOGRAPHY 51

LEE, A. X.; NAGABANDI, A.; ABBEEL, P.; LEVINE, S. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems, v. 33, p. 741–752, 2020.

LEE, J.; KIM, G.-H.; POUPART, P.; KIM, K.-E. Monte-carlo tree search for constrained
pomdps. Advances in Neural Information Processing Systems, v. 31, 2018.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A.; LILLICRAP, T.; HARLEY, T.;
SILVER, D.; KAVUKCUOGLU, K. Asynchronous methods for deep reinforcement learn-
ing. In: PMLR. International conference on machine learning. [S.l.], 2016. p. 1928–1937.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; GRAVES, A.; ANTONOGLOU, I.;
WIERSTRA, D.; RIEDMILLER, M. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS, J.; BELLE-
MARE, M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K.; OSTROVSKI,
G. et al. Human-level control through deep reinforcement learning. nature, Nature Pub-
lishing Group, v. 518, n. 7540, p. 529–533, 2015.

NG, A. Y.; HARADA, D.; RUSSELL, S. Policy invariance under reward transformations:
Theory and application to reward shaping. In: CITESEER. Icml. [S.l.], 1999. v. 99, p.
278–287.

PASZKE, A.; GROSS, S.; CHINTALA, S.; CHANAN, G.; YANG, E.; DEVITO, Z.; LIN,
Z.; DESMAISON, A.; ANTIGA, L.; LERER, A. Automatic differentiation in pytorch. In:
NIPS-W. [S.l.: s.n.], 2017.

POUYANFAR, S.; SADIQ, S.; YAN, Y.; TIAN, H.; TAO, Y.; REYES, M. P.; SHYU,
M.-L.; CHEN, S.-C.; IYENGAR, S. S. A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 51,
n. 5, p. 1–36, 2018.

RAMESH, A.; DHARIWAL, P.; NICHOL, A.; CHU, C.; CHEN, M. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

RAY, A.; ACHIAM, J.; AMODEI, D. Benchmarking safe exploration in deep reinforce-
ment learning. arXiv preprint arXiv:1910.01708, v. 7, n. 1, p. 2, 2019.

ROBBINS, H.; MONRO, S. A stochastic approximation method. The annals of mathe-
matical statistics, JSTOR, p. 400–407, 1951.

ROCKAFELLAR, R. T.; URYASEV, S. et al. Optimization of conditional value-at-risk.
Journal of risk, Citeseer, v. 2, p. 21–42, 2000.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. nature, Nature Publishing Group UK London, v. 323, n. 6088,
p. 533–536, 1986.

RUMMERY, G. A.; NIRANJAN, M. On-line Q-learning using connectionist systems.
[S.l.]: Citeseer, 1994. v. 37.

SCHULMAN, J.; LEVINE, S.; ABBEEL, P.; JORDAN, M.; MORITZ, P. Trust region
policy optimization. In: PMLR. International conference on machine learning. [S.l.], 2015.
p. 1889–1897.



BIBLIOGRAPHY 52

SCHULMAN, J.; WOLSKI, F.; DHARIWAL, P.; RADFORD, A.; KLIMOV, O. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

SILVER, D.; HUANG, A.; MADDISON, C. J.; GUEZ, A.; SIFRE, L.; DRIESSCHE, G.
V. D.; SCHRITTWIESER, J.; ANTONOGLOU, I.; PANNEERSHELVAM, V.; LANC-
TOT, M. et al. Mastering the game of go with deep neural networks and tree search.
nature, Nature Publishing Group, v. 529, n. 7587, p. 484–489, 2016.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. [S.l.]: MIT
press, 2018.

TANG, Y. C.; ZHANG, J.; SALAKHUTDINOV, R. Worst cases policy gradients. arXiv
preprint arXiv:1911.03618, 2019.

WRIGHT, S. J. Numerical optimization. 2006.

YANG, Q.; SIMÃO, T. D.; TINDEMANS, S. H.; SPAAN, M. T. Safety-constrained
reinforcement learning with a distributional safety critic. Machine Learning, Springer,
v. 112, n. 3, p. 859–887, 2023.


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Reinforcement Learning
	Markov Decision Process
	Dynamic Programming
	Tabular Reinforcement Learning
	Function Approximation

	Deep Reinforcement Learning
	Neural Networks
	Soft Actor-Critic

	Distributional Reinforcement Learning
	Implicit Quantile Network

	Constrained Markov Decision Process

	Related Work
	Fully Observable Safe Reinforcement Learning
	Partially Observable Safe Reinforcement Learning

	Distributional Safe Stochastic Latent Actor-Critic
	Computational Experiments
	Implementation Details

	Conclusion
	Bibliography

