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BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.
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Resumo

Interfaces cérebro-máquina (ICMs) são sistemas que usam sinais cerebrais para interagir

com dispositivos externos, com uma ampla variedade de aplicações que vão do entrete-

nimento à área da saúde. Nas ICMs, sinais cebrais de imaginação motora são um dos

tipos de sinal mais utilizados, permitindo que indiv́ıduos controlem dispositivos exter-

nos através da simulação mental de movimentos do corpo. Nesse contexto, redes neurais

convolucionais (RNCs) podem ser utilizadas para classificar sinais de eletroencefalograma

(EEG) de imaginação motora e traduzi-los em comandos espećıficos. No entanto, esses

sinais são geralmente ruidosos e podem variar significativamente ao longo do tempo e

entre pessoas, o que frequentemente torna necessária a coleta de uma grande quantidade

de dados para calibrar esses modelos. Esse processo pode ser demorado e cansativo para

os usuários das ICMs, um problema particularmente significativo em aplicações em saúde.

Para resolver esse problema, este trabalho investiga a eficácia do aumento de dados para

reduzir a necessidade de coleta dados e melhorar a acurácia de classificação dos sinais.

Cinco métodos de aumento de dados previamente documentados na literatura são avali-

ados em dois conjuntos de dados de referência de imaginação motora utilizando uma

RNC de poucos parâmetros. As avaliações abrangem uma variedade de configurações

de eletrodos de EEG, tarefas de imaginação motora e tamanhos de amostras de treina-

mento. Os métodos são então comparados entre si em termos de acurácia e efeitos sobre

a distribuição dos dados. Os resultados indicam que o aumento de dados pode aliviar a

necessidade de dados originais, resultando em maior acurácia mesmo com menos amostras

de treinamento. Os resultados também mostram que a combinação de diferentes métodos

de aumento de dados pode levar a melhorias adicionais na acurácia.

Palavras-chave: interface cérebro-máquina, imaginação motora, rede neural convolu-

cional, aumento de dados.



Abstract

Brain-computer interfaces (BCIs) are systems that use brain signals to interact with exter-

nal devices, with a wide variety of applications spanning from entertainment to healthcare.

Within BCIs, motor imagery brain signals are one of the most commonly used, enabling

individuals to control external devices by mentally simulating body movements. In this

context, convolutional neural networks (CNNs) can be used to classify motor imagery elec-

troencephalogram (EEG) signals and translate them into specific commands. However,

these signals are usually noisy and can vary significantly over time and among people,

making it frequently necessary to collect a large amount of data to calibrate these models.

This process can be time-consuming and fatiguing for BCI users, a particularly significant

issue in healthcare settings. In order to address this problem, this work investigates the

effectiveness of data augmentation in reducing the need for data and improving classifica-

tion accuracy. Five data augmentation methods previously documented in the literature

are evaluated across two motor imagery benchmark datasets utilizing a few-parameter

CNN. The evaluations encompass a variety of configurations of EEG electrodes, motor

imagery tasks, and training sample sizes. Each method is then compared against one

another in terms of both accuracy and data distribution effects. The overall findings in-

dicate that data augmentation can alleviate the need for original data, resulting in higher

accuracy even with fewer training samples. The findings also indicate that combining

different data augmentation methods can lead to further improvements in accuracy.

Keywords: brain-computer interface, motor imagery, convolutional neural network, data

augmentation.
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1 Introduction

Brain-computer interfaces (BCIs) have a wide range of applications to improve acces-

sibility, health, and quality of life for people, including wheelchair control (CARLSON;

MILLAN, 2013), prosthesis operation (STAFFA; GIORDANO; FICUCIELLO, 2020), and

neurorehabilitation (MANE; CHOUHAN; GUAN, 2020). In these applications, the most

common paradigm is motor imagery. Motor imagery is a cognitive process that occurs

when a person imagines a body movement. This process generates brain activity patterns

that BCIs can classify to emit commands to external devices and provide feedback to

the user. For example, a stroke patient can use a motor imagery BCI to move a robotic

hand by imagining the movement of one hand during a rehabilitation treatment to recover

upper limb movement.

Motor imagery signals are most commonly captured using electroencephalography

(EEG), mainly due to its non-invasiveness and affordability compared with the alterna-

tives (PAWAR; DHAGE, 2020). However, motor imagery EEG signals are often distorted

by other brain signals and nervous activities, including involuntary muscle movements

and eye blinks, resulting in a low signal-to-noise ratio (SINGH et al., 2021).

In this context, many approaches have been proposed to preprocess, extract fea-

tures from, and classify these signals (SINGH et al., 2021). Recently, convolutional neu-

ral networks (CNNs) have been the most prevalent architecture in the deep learning

domain (CRAIK; HE; CONTRERAS-VIDAL, 2019), having been successfully applied

to perform end-to-end classification on motor imagery signals (LASHGARI et al., 2021;

LAWHERN et al., 2018; SCHIRRMEISTER et al., 2017).

Nevertheless, machine learning—especially deep learning—often requires a large

amount of training data. Moreover, creating a universal motor imagery BCI (LOTTE,

2015) is particularly challenging, as each person’s brain signals are different and tend

to change over time. Therefore, it is necessary to collect significant amounts of data

to calibrate a motor imagery BCI before a user can operate it. This issue is especially

relevant in applications such as neurorehabilitation, where patients may experience fatigue
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and demotivation due to the mental effort required for motor imagery and the possibility

of receiving inaccurate feedback from the BCI. In this scenario, increasing classification

performance and reducing calibration times remain active research challenges (SINGH et

al., 2021).

1.1 Related Work

Some works in the literature have addressed these issues. Particularly, several works have

investigated data augmentation, the generation of artificial data from real data, as a means

to solve this problem. For instance, Lotte (2015) evaluates several techniques to reduce

calibration time in a classical machine learning-based BCI using common spatial pattern

(CSP) for feature extraction and linear discriminant analysis (LDA) for classification.

The evaluated techniques include not only data augmentation, but also regularization,

user-to-user transfer, and semi-supervised. The author shows that data augmentation

methods based on segmentation and recombination of input data improve accuracy in

motor imagery classification, especially in low-data regimes, achieving competitive results

with other approaches.

Meanwhile, Dinarès-Ferran et al. (2018) propose a new data augmentation method

for motor imagery EEG data based on empirical mode decomposition (HUANG et al.,

1998) and evaluate its effectiveness with an LDA classifier and a CSP feature extractor.

The authors conclude that the artificially generated samples can partially replace the

original training samples and thus reduce calibration times, achieving similar error rates

as when using as little as 50% of the original samples.

Moreover, Lashgari, Liang and Maoz (2020) and He et al. (2021) survey and

review several data augmentation methods used throughout the deep learning EEG lit-

erature, reporting on techniques based on noise addition, sliding windows, mathematical

transforms, and deep generative models.

Nevertheless, the existing work involving data augmentation for motor imagery

BCIs either includes a limited number of experiments and data augmentation techniques,

does not evaluate performance on neural network-based classifiers, or does not directly

address the reduction of BCI calibration times.
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1.2 Goal Statement

In this context, this work presents the contributions from (FARIA et al., 2022), which

further studies the extent to which data augmentation can improve classification accuracy

and reduce calibration times in CNN-based motor imagery BCIs. Particularly, we analyze

the effectiveness of five simple data augmentation methods from the literature (LASH-

GARI; LIANG; MAOZ, 2020; HE et al., 2021) in addressing these issues: Sliding Window

(SCHIRRMEISTER et al., 2017), Noise Addition (LASHGARI et al., 2021), Amplitude

Perturbation (LI et al., 2019), Segmentation and Recombination (LOTTE, 2015), and

Empirical Mode Decomposition (DINARÈS-FERRAN et al., 2018). Additionally, based

on our experimental results, we also propose a combination of two of these data augmen-

tation methods. For our evaluations, we perform experiments with a few-parameter CNN

on two motor imagery datasets, including multiple test scenarios with cases ranging from

minimal to moderate quantities of training data.

The remainder of this work is structured as follows. Chapter 2 gives an overview of

the fundamental concepts that are pertinent to our research. In Chapter 3, we present and

elaborate on the datasets, neural network architecture, and data augmentation methods

that we analyze. Chapter 4 defines the experimental protocol, presents the results, and

provides an analysis and discussion of the findings. Finally, Chapter 5 concludes the work.
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2 Background

The present work builds on a broad range of concepts, ranging from machine learning and

neural networks to the functioning of the human brain. This chapter aims to provide an

overview of these concepts to ensure that the work is reasonably self-contained, includ-

ing recommendations for further reading when appropriate. The chapter starts with a

concise introduction to brain-computer interfaces, highlighting how signals are collected

and providing insights into the motor imagery cognitive process. It then introduces the

fundamentals of machine learning, which plays a crucial role in decoding brain signals.

Particularly, the chapter covers how computers learn from data and generalize to new sit-

uations and presents the concept of data augmentation. Finally, it explores deep neural

networks, delving into their structure, algorithms, and optimization methods.

2.1 Brain-Computer Interfaces

There are many ways to define brain-computer interfaces (BCIs). According to Wolpaw

et al. (2002), “a direct brain-computer interface is a device that provides the brain with

a new, non-muscular communication and control channel.” To Levine et al. (1999), “a

direct brain interface (DBI) accepts voluntary commands directly from the human brain

without requiring physical movement and can be used to operate a computer or other

technologies.” Meanwhile, Donoghue (2002) states that “a major goal of a BMI (brain-

machine interface) is to provide a command signal from the cortex. This command serves

as a new functional output to control disabled body parts or physical devices, such as

computers or robotic limbs.”

In this work, we define brain-computer interfaces as systems that allow human

interaction with external devices through a direct connection between the brain and the

machine. By bypassing traditional routes such as muscles or nerves, BCIs enable indi-

viduals to control and interact with technology using their minds alone, fundamentally

changing the way we interact with machines in addition to opening up new possibilities
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Feedback

DecoderBrain Signals
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Device

Figure 2.1: Brain-computer interface interaction loop.

for individuals with disabilities or neurodegenerative conditions.

The following sections provide a brief summary of key concepts in (GRAIMANN;

ALLISON; PFURTSCHELLER, 2010), which offers an introduction to brain-computer

interfaces.

2.1.1 Overview

The main idea behind BCIs is the ability to decode and interpret brains signals and

translate them into meaningful commands. This process involves capturing neural activ-

ity from the brain, processing and analyzing the signals, and then generating an output

that can be used to control external devices or systems. In order to establish this com-

munication pathway, BCIs typically employ a combination of concepts from the fields of

neuriphisiology, signal processing, and machine learning.

The main interaction loop of a BCI is depicted in Figure 2.1. The loop consists

of four essential components: the user, the brain activity acquisition, the signal decoding,

and the device to be controlled.

First, the user generates specific brain activity patterns through various mental

tasks or cognitive processes. Such brain activities can be recorded and captured through

different means.

Next, the acquired brain signals are passed through the signal decoding step.

Associated with this step is signal preprocessing, which typically include filtering, artifact

removal, and noise reduction to enhance the quality of the signals. Relevant features

are then extracted from the preprocessed signals and fed into a classification or decoding

algorithm. This algorithm learns from training data to identify and classify specific brain
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Figure 2.2: International 10-10 system for EEG electrode placement.
From (OXLEY, 2021).

patterns that correspond to different mental tasks or commands.

Finally, the output from the decoding algorithm is used to control the external

device or computer system. This output can be in the form of commands, cursor move-

ments, robotic actions, or any other action depending on the specific application of the

BCI. The controlled device or system responds accordingly, establishing an interactive

loop connecting the user’s brain activity with the external environment.

Importantly, BCIs possess bidirectional capabilities, not only enabling brain con-

trol of external devices but also providing sensory feedback to the user. This feedback

can be visual, auditory, or tactile, delivering information about the current state of the

controlled device or system to the user.

2.1.2 Electroencephalography

Electroencephalography (EEG) is one of the primary modalities used in BCIs. It involves

the measurement and recording of electrical activity generated by the brain using elec-

trodes placed on the scalp. EEG offers several advantages, such as non-invasiveness, high

temporal resolution, and relatively low cost (RAMADAN; VASILAKOS, 2017), while be-

ing able to capture neural signals associated with different cognitive and motor processes.
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EEG brain signals are obtained by placing multiple electrodes on the scalp, fol-

lowing specific electrode arrangements. One of the most common of such arrangements

is the 10-10 system, illustrated in Figure 2.2. By strategically positioning electrodes ac-

cording to anatomical landmarks, this system can capture electrical potentials generated

by the synchronized activity of large populations of neurons.

These EEG signals exhibit distinctive patterns of rhythmic oscillations, which are

classified into different frequency bands. The main frequency bands include delta (0.5-4

Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz). Each

frequency band is associated with specific brain states and cognitive functions. As such,

these frequency bands serve as windows into the dynamic activity of the brain, providing

insights into different mental states, attentional processes, and cognitive tasks.

Two disadvantages of EEG are its sensitivity to noise from the environment and

its relatively low spatial resolution. In this context, signal preprocessing techniques are

commonly applied to EEG data to improve the quality and extract relevant information.

These techniques involve filtering, artifact removal, and noise reduction to enhance the

signal-to-noise ratio. Additionally, preprocessing steps also include segmenting the data

into epochs, which correspond to specific task-related events or intervals.

2.1.3 Motor Imagery

Motor imagery is a key paradigm utilized in BCIs. It involves the mental simulation

of motor actions without actual physical movement. By imagining specific motor tasks,

individuals generate distinct patterns of brain activity that can be detected and decoded

by BCIs. Exploiting this phenomenon, motor imagery-based BCIs provide a means to

voluntarily control external devices using brain activity.

During motor imagery, the brain produces event-related desynchronization (ERD)

or event-related synchronization (ERS) patterns. ERD refers to a decrease in the power

of specific frequency bands, while ERS represents an increase. For instance, when an

individual engages in motor imagery of movement in their left hand, it can lead to a

noticeable ERD in the beta frequency band over the corresponding sensorimotor cortex

region of the brain. Conversely, if the individual were to imagine movement in their
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Figure 2.3: Maps of signal strength (µV 2) distribution on the scalp (µ = 8–12 Hz; β =
18–30 Hz) during imagined movement of the left or right hand.

Adapted from (WIERZGA LA et al., 2018).

right hand, a similar analysis would reveal an ERD in the beta frequency band over the

sensorimotor cortex on the opposite hemisphere. A visualization of this phenomenon

through EEG signals is depicted in Figure 2.3.

Decoding such motor imagery-related brain signals requires the development of

robust machine learning algorithms. These algorithms learn to classify different patterns

of brain activity associated with specific motor imagery tasks. By combining EEG mea-

surements with signal processing and machine learning algorithms, motor imagery-related

brain signals can be translated into actionable commands for controlling robotic limbs,

virtual avatars, and other devices.

2.2 Machine Learning

Machine learning is a field of study that focuses on developing computer algorithms that

learn from data. Rather than being explicitly programmed, machine learning algorithms

use computational methods to identify patterns and relationships within datasets, allow-
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ing them to improve their accuracy and effectiveness over time1. For example, given an

appropriate set of input-output pairs of data, a machine learning algorithm could learn

how to detect objects in an image.

There are three main machine learning paradigms: supervised learning, unsuper-

vised learning, and reinforcement learning (BISHOP, 2006). In supervised learning, the

algorithm is trained on labeled data, with known inputs and outputs, to learn how to

predict new outputs from new inputs. Meanwhile, unsupervised learning involves train-

ing the algorithm on unlabeled data, allowing it to discover patterns and relationships

without explicit guidance. In turn, reinforcement learning is concerned with agents that

learn by interacting with their environment, taking actions with the goal of maximizing

rewards over time.

The most widely used paradigm in machine learning, and the one used through-

out this work, is supervised learning. Therefore, the next section covers this approach

exclusively. For an extensive discussion on machine learning and related topics, the reader

is referred to (MURPHY, 2022).

2.2.1 Supervised Learning

In supervised learning, a model learns to predict outputs from inputs based on a labeled

dataset. For example, using a dataset of images labeled as containing or not containing

a cat, we can train a cat recognition model that uses pixel data as input. To do so, we

optimize the parameters of the model to minimize the difference between the predicted

outputs and the target outputs, which is indicated by a loss function.

More formally, the supervised learning problem consists in learning a mapping

f : X → Y from inputs x to outputs y, parameterized by θ. Given a training dataset

D = {(xi,yi)}ni=1, the goal is to find the function parameters θ∗ that minimize the loss

ℓ(ŷ,y) between the predicted outputs ŷ and the target outputs y:

θ∗ = arg min
θ

1

n

n∑
i=1

ℓ(f(xi;θ),yi) (2.1)

1This definition is inspired by a quote commonly attributed to Arthur Samuel that “Machine learning
is the field of study that gives computers the ability to learn without being explicitly programmed”.
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This process of fitting the parameters to the training data is called empirical risk mini-

mization (VAPNIK, 1998), and the term being minimized is called the empirical risk.

However, the goal of supervised learning is not simply to fit the training data,

but rather to generalize to unseen samples. As Mitchell (1980) argues, generalization

necessarily involves induction, which means deriving a general rule from a limited set

of examples. Therefore, inductive biases are essential for machine learning models to

generalize, as they determine the most suitable hypothesis2 from a set of equally plausible

options that fit the training data. Such biases originate from factors such as model

architecture, learning procedure, and distribution of initial parameters. Importantly, they

often dictate how well a model can generalize in a given problem.

In order to estimate the generalization performance of the model, a separate test

dataset is typically used. A model that performs well on the test set is said to generalize,

indicating that it has learned to make accurate predictions on new data. However, if

a model performs well on the training set but poorly on the test set, it is said to have

overfitted, indicating that it has memorized the training data instead of learning to make

more general predictions.

One technique frequently used to avoid overfitting is regularization, in which a

constraint is imposed on the parameters of the model to prevent it from fitting the training

data too closely. This is often accomplished by introducing an additional penalty term to

the loss function.

To conclude this discussion, it is worth mentioning the two main types of super-

vised learning: classification, in which the outputs are discrete categories, and regression,

in which they are numeric values. Since this work revolves around a classification problem,

the following section exclusively covers this topic.

2.2.2 Classification

Classification is a particular supervised learning setting that consists in learning a class

label predictor function. Given an input, a classifier predicts which class it belongs to.

For example, Figure 2.4 shows the decision boundary of a classifier that determines what

2Here, a hypothesis refers to a set of model parameters, whereas the set of admissible hypotheses is
known as the hypothesis space.
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Figure 2.4: Decision boundary of a classifier on the Iris dataset.

Adapted from (GÉRON, 2019).

flower species an individual belongs to based on sepal length and width measurements.

Typically, a classification model outputs the probability that an input sample

belongs to each class, assigning it to the class with the highest probability. When the

classification problem has only two classes (usually referred to as the positive and the

negative class), the model is called a binary classifier and is commonly optimized using

the binary cross-entropy loss function:

ℓ(ŷ, y) = −y log ŷ − (1− y) log (1− ŷ) (2.2)

In the equation above, y ∈ {0, 1} indicates whether the sample belongs to the positive

class, while ŷ represents the predicted probability that it does. In the more general

multiclass classification scenario, in which the problem involves K possible classes, the

categorical cross-entropy loss function is used instead:

ℓ(ŷ,y) = −
K∑
j=1

y(j) log ŷ(j) (2.3)

In this case, the output vector ŷ represents the predicted probabilities for each class,
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whereas the vector y indicates the true class labels using one-hot encoding.

Specifically, one-hot encoding refers to a method of representing categorical vari-

ables using sparse binary vectors where each category is indicated by a single non-zero

element. For example, in a color classification problem where the classes belong to the

set {red, green, blue}, red could be represented as [1, 0, 0], green as [0, 1, 0], and blue as

[0, 0, 1].

2.2.3 Data Augmentation

When using supervised learning algorithms, we may sometimes need considerable amounts

of data in order to solve a problem. However, in many instances, the availability of labeled

data is limited, which can compromise the performance of trained models. To make up

for this gap, we can use data augmentation.

Data augmentation is a strategy that involves generating artificial samples from

available real samples. Essentially, we create new samples by applying some transforma-

tion to the original samples while keeping their labels intact, incorporating the generated

data points into the training dataset. The resulting augmented dataset usually encom-

passes a broader range of variations and patterns, leading to more a robust model after

training.

Particularly, data augmentation can be thought of as a way of injecting inductive

bias into the model. For example, in an image classification task, if we want the model to

be invariant to shifting in the input, we can provide randomly shifted images as training

samples. Similarly, if we want the model to be robust to small amounts of noise, we can

perturb the inputs of the model with noise while keeping target labels the same. Through

this process, data augmentation can often improve generalization performance, especially

when few data points are available.

2.3 Deep Neural Networks

Deep neural networks are a powerful type of machine learning model known for their

remarkable ability to learn and fit complex data, having led to significant advances in



2.3 Deep Neural Networks 22

OutputsInputs

First
hidden layer

Second
hidden layer

Output
layer

Input
layer

Figure 2.5: Illustration of a feedforward neural network.

computer vision, speech recognition, and natural language processing. Originally inspired

by the structure and function of the biological brain, neural networks have the neuron

as their basic processing unit. Organized as a series of interconnected neurons, these

networks compute the output by applying a sequence of differentiable linear and nonlinear

transformations to the input, with each neuron contributing to the overall computation.

Neural networks are highly flexible, allowing for a wide variety of model architec-

tures, such as the convolutional neural network (CNN) for image data, the graph neural

network (GNN) for graph data, and the recurrent neural network (RNN) for sequence

data. In the following section, we begin exploring the most basic neural network archi-

tecture: the feedforward neural network.

2.3.1 Feedforward Neural Networks

Feedforward neural networks (FFNs) are neural networks in which information flows in

a single direction, from input to output neurons. The simplest of such networks is the

multilayer perceptron (MLP), shown in Figure 2.5. This network consists in a sequence

of fully connected layers of neurons, where each layer feeds into the next. Starting at the

input layer, the information is processed through one or more hidden layers before being
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output at the final layer.

Each neuron in the network follows the model shown in Figure 2.6. In this model,

a neuron takes one or more input signals, multiplies each by its corresponding weight, and

then adds the weighted inputs along with a bias value. The resulting sum is then passed

through a nonlinear activation function, which allows neural networks to model complex

relationships between inputs and outputs. Mathematically, each neuron computes an

affine transformation of its inputs followed by an activation function:

y = ϕ

(
m∑
i=1

wixi + b

)
(2.4)

where x ∈ Rm is the input vector, w ∈ Rm is the weight vector, b ∈ R is the bias value,

and ϕ(·) is the activation function.

There are many possible activation functions. Some of the most widely used ones

are shown in Figure 2.7. The sigmoid activation function (denoted σ), for example, can

be understood as a smoothed version of the step function, in which the output is one

when the input is positive and zero otherwise. The hyperbolic tangent (tanh) function,

in turn, is similar to the sigmoid function but with output values ranging from -1 to 1.

Finally, the ReLU activation function is linear on the positive domain and zero otherwise.
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Figure 2.7: Three common activation functions.

Another notable activation function is the softmax, defined as:

softmax(x)i =
exp(xi)∑K
j=1 exp(xj)

(2.5)

This function normalizes a set of input values into a probability distribution, in which the

output values add up to one. Thus, it is commonly used to compute class probabilities in

multiclass classification problems3.

In summary, each layer in an MLP computes a linear transformation of its inputs

plus a bias vector, followed by the application of a nonlinear activation function. The

process of computing the output of the network layer by layer is called forward pass and

is described in Algorithm 1.

Algorithm 1: Neural network forward pass.

Input : x ∈ Rdin , vector of input values.
Output : y ∈ Rdout , vector of output values.
Parameters: Wl ∈ Rdl−1×dl , bl ∈ Rdl

1 begin
2 a0 ← x
3 for l← 1 to L do
4 zl = Wlal−1 + bl // compute the pre-activation zl

5 al = ϕl(zl) // apply the nonlinear activation function ϕl

6 end for
7 return y = aL

8 end

3In practice, the softmax activation function is not used in the model’s output layer. Instead, the
model usually outputs logits while the softmax computation is incorporated into the loss function.
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Figure 2.8: Illustration of gradient descent optimization over a loss landscape.

2.3.2 Gradient Descent

Gradient descent is a general gradient-based algorithm that can efficiently optimize dif-

ferentiable cost functions. It is used in many fields of science and engineering for the

optimization of functions of continuous variables, especially in the field of machine learn-

ing. Neural networks, being differentiable models, use gradient descent to learn their

weight and bias parameters and minimize the loss function.

The optimization process begins by randomly initializing the parameters of the

model. Then, the gradient descent algorithm iteratively updates the parameters according

to the gradients of the loss function. At each iteration, the algorithm takes a small step

to decrease the value of the loss function, where the gradients indicate the direction of

the parameter updates. After many iterations, the algorithm usually converges to a local

minimum. This process is illustrated in Figure 2.8.

In practice, neural networks typically use the stochastic gradient descent algo-

rithm, which randomly samples a portion of the training dataset at each optimization

step. To compute the loss function, the algorithm samples a batch B = {(xi,yi)}mi=1 of
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instances from the training set and calculates the average loss over the batch:

L(θ) =
1

m

m∑
i=1

ℓ(f(xi;θ),yi) (2.6)

This approach can be more efficient than using the entire dataset while still providing good

gradient estimates. Based on this, the stochastic gradient descent algorithm minimizes

the loss function by iteratively applying the following update rule:

θ(t+1) = θ(t) − λ∇θL(θ(t)) (2.7)

where λ is a hyperparameter called the step size or learning rate, which controls the

magnitude of the parameter updates at each step. Notably, choosing an appropriate

learning rate is crucial for ensuring the algorithm’s convergence and overall performance.

One limitation of vanilla stochastic gradient descent is its poor performance in

narrow valleys, where it may exhibit zig-zag patterns, and nearly flat surfaces such as

saddle points, which it may take a long time to traverse. Several modifications of gradi-

ent descent have been proposed to address these shortcomings and improve performance.

These modifications incorporate concepts such as momentum and have led to the devel-

opment of advanced optimizers such as Adam (KINGMA; BA, 2014).

To conclude, it is worth noting that the treatment of gradient descent in this

section is very succint. For a more in-depth exploration of gradient descent and other op-

timization techniques, the reader is referred to (KOCHENDERFER; WHEELER, 2019).

2.3.3 Backpropagation

In the previous section, we discussed how neural networks use gradient descent for opti-

mization. However, to apply gradient descent, it is necessary to compute the gradients

of the loss function with respect to the network parameters. For this purpose, neural

networks use the backpropagation algorithm.

The backpropagation algorithm, at its core, leverages the chain rule to efficiently

compute gradients. It consists of two passes through the network: a forward pass and a

backward pass. In the forward pass, the input is propagated through the network, layer
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by layer, to compute the final output and the loss value. In the backward pass, gradients

are computed recursively, starting from the output layer and moving back to the input

layer. For instance, we have that:

∂L
∂θ3

=
∂L
∂a4

∂a4

∂θ3

(2.8)

∂L
∂θ2

=
∂L
∂a4

∂a4

∂a3

∂a3

∂θ2

(2.9)

∂L
∂θ1

=
∂L
∂a4

∂a4

∂a3

∂a3

∂a2

∂a2

∂θ1

(2.10)

More generally, in an L-layer MLP, the gradients with respect to the parameters of the

layer l can be computed as:

∂L
∂θl

=
∂L
∂aL

(
L∏

i=l+1

∂ai

∂ai−1

)
∂al

∂θl

(2.11)

In practice, these gradients are automatically computed by modern deep learn-

ing libraries using a technique called reverse mode differentiation. This technique can

analytically compute gradients for any differentiable computational graph, which neural

networks are a special case of.
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3 Materials and Methods

In this work, we analyze the effectiveness of data augmentation methods on motor im-

agery EEG classification. This chapter presents the essential components involved in

our analysis. It starts by describing the datasets employed in the experiments, including

their characteristics and data collection protocols. Next, it delves into the neural network

architecture of the CNN-based classifier employed in the evaluation of the data augmen-

tation methods. Lastly, the chapter concludes by providing a detailed account of each

data augmentation method explored in our analyses.

3.1 Datasets

We use two motor imagery EEG datasets from BCI Competition IV (TANGERMANN et

al., 2012), which are commonly used in the literature as a benchmark for motor imagery

classification algorithms. The datasets are described in the following sections.

3.1.1 BCIC-IV 2a

The dataset 2a from BCI Competition IV consists of data from four motor imagery

tasks: left hand, right hand, tongue, and both feet imagination. The data comprise EEG

recordings from 22 electrodes placed according to the 10-20 system. The EEG signals

were sampled at 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz. The dataset

includes data from 9 healthy subjects, who participated in two sessions on different days,

each consisting of 288 trials (72 for each task).

Each trial is approximately 8 seconds long and adheres to the protocol shown in

Figure 3.1, which is defined as follows: (i) 0–2 s: a fixation cross appears on the screen

and a beep is played; (ii) 2–3.25 s: a cue appears on the screen, indicating the motor

imagery task the participant should perform. (iii) 3–6 s: the participant imagines the

movement; and (iv) 6 s: the fixation cross disappears and a short break is provided before

the next trial.
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Figure 3.1: Structure of a trial in the BCIC-IV 2a dataset.
Adapted from (TANGERMANN et al., 2012).
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and with feedback (lower).

Adapted from (TANGERMANN et al., 2012).

3.1.2 BCIC-IV 2b

The dataset 2b from BCI Competition IV consists of data from two motor imagery tasks:

left hand and right hand imagination. The data comprise EEG recordings from 3 elec-

trodes: C3, Cz, and C4. Notably, these electrodes encompass the brain region where mo-

tor imagery activity is most prominent (GRAIMANN; ALLISON; PFURTSCHELLER,

2010). The EEG signals were sampled at 250 Hz and bandpass-filtered between 0.5 Hz

and 100 Hz. The dataset includes data from 9 healthy subjects, where each subject par-

ticipated in five recording sessions with at least 120 trials each (60 for each task). The

first two sessions, recorded on different days, had no feedback, whereas the last three

provided feedback to the user.

The structure of the trials from this dataset is shown in Figure 3.2. For the

sessions without feedback, each trial is approximately 9 seconds long and adheres to the

following protocol: (i) 0–3 s: a fixation cross appears on the screen and a beep is played;

(ii) 3–4.25 s: a cue appears on the screen, indicating the target motor imagery task. (iii)

4–7 s: the subject imagines the movement; and (iv) 7 s: the fixation cross disappears and

a short break is provided before the next run.
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Table 3.1: Summary of the EEGNet architecture.

Block Layer # Filters Kernel Size Output Size

Block 1

Input (1, E, T )
Conv2d F1 (1, K) (F1, E, T )
BatchNorm2d (F1, E, T )
DepthConv2d1 D × F1 (E, 1) (D × F1, 1, T )
BatchNorm2d (D × F1, 1, T )
ELU (D × F1, 1, T )
AvgPool2d (1, 4) (D × F1, 1, T//4)
Dropout (D × F1, 1, T//4)

Block 2

SepConv2d F2 (1, 16) (F2, 1, T//4)
BatchNorm2d (F2, 1, T//4)
ELU (F2, 1, T//4)
AvgPool2d (1, 8) (F2, 1, T//32)
Dropout (F2, 1, T//32)

Classifier
Dense2 N × (F2 × T//32) N
Softmax N

1 The weights of the layer are constrained such that ∥w∥2 < 1.
2 The weights of the layer are constrained such that ∥w∥2 < 0.25.

For the sessions with feedback, each trial is also approximately 9 seconds long

and obeys the following protocol: (i) 0–3.5 s: a gray smiley face appears on the screen

and a beep is played; (ii) 3–7.5 s: a cue appears on the screen, indicating the target motor

imagery task. (iii) 3.5–7.5 s: the subject imagines the movement and receives feedback

from the BCI through the smiley face; and (iv) 7.5 s: the smiley face disappears and a

short break is provided before the next run.

3.2 Convolutional Neural Network Architecture

Convolutional neural networks (CNNs) are a special type of neural network based on the

convolution operation. Each CNN layer consists of a set of learned filters which are slid

across the input in order to perform local feature extraction. By doing so, CNNs can

detect meaningful patterns at different positions of the input.

Owing to their structure, CNNs are particularly well-suited for processing signal

data such as EEG, being able to detect various spatial and frequency patterns at differ-

ent moments in time. This motivates the use of a CNN architecture in this work. In

the following section, we discuss the specific convolutional architecture selected for our
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analysis.

3.2.1 EEGNet

Since our analyses include scenarios with very few training data and considering the

limitations associated with deep learning computational resources for both training and

inference (WANG et al., 2020), we use EEGNet. EEGNet is a few-parameter CNN for

EEG-based BCIs (LAWHERN et al., 2018) which can achieve good classification perfor-

mance with few training data. EEGNet takes raw motor imagery EEG signals as input in

order to classify imagined movement. Its architecture uses separable and depthwise convo-

lutions to extract features from the input signals while reducing the number of parameters

and includes several regularization and normalization mechanisms. The architecture of

the network is summarized in Table 3.1. The model consists of three blocks, where the

first two are dedicated to feature extraction and the last one is dedicated to classification.

In Block 1, two convolutional steps are performed sequentially. The first step

involves applying 2D convolutional filters to capture frequency information. These filters

generate multiple feature maps which we can interpret as representing different band-

pass frequencies. The second step utilizes a depthwise convolution, which learns spatial

filters for each temporal filter in the previous step. This allows for efficient extraction of

frequency-specific spatial filters, enhancing the processing of EEG data.

In Block 2, a separable convolution is employed, which consists of a depthwise

convolution followed by pointwise convolutions. The depthwise convolution captures tem-

poral information from individual feature maps, summarizing each map independently.

This step is useful for EEG signals as different feature maps may represent data at various

time scales. The pointwise convolutions then merge the outputs, combining the summa-

rized feature maps. The main advantages of separable convolutions are reducing the

number of parameters and explicitly decoupling relationships within and across feature

maps, resulting in more efficient and effective processing of EEG data.

In both blocks, the exponential linear unit (ELU) nonlinearity4 is used. Each

4The ELU activation function is defined as ϕ(x) =

{
x if x ≥ 0

α(ex − 1) if x < 0
.
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Figure 3.3: Visual scheme of the analyzed data augmentation methods. Amplitude Per-
turbation was omitted for brevity.

nonlinearity is preceded by a batch normalization layer in order to improve stability.

Additionally, the network includes weight normalization on both the first block and the

classifier block. Lastly, each of the two first blocks include a dropout layer for regulariza-

tion and an average pooling layer for dimensionality reduction.

It should be noted that EEGNet can be configured according to several hyperpa-

rameters. The exact configurations used in this work are detailed in Section 4.1.4.

3.3 Data Augmentation Methods

We evaluate five simple, popular EEG data augmentation methods previously reported in

the literature: Sliding Window (SCHIRRMEISTER et al., 2017), Noise Addition (LASH-

GARI et al., 2021), Amplitude Perturbation (LI et al., 2019), Segmentation and Recom-

bination (LOTTE, 2015), and Empirical Mode Decomposition (DINARÈS-FERRAN et

al., 2018). These augmentation methods rely on simple transformations and require no

training, unlike approaches that involve deep generative modeling (LASHGARI; LIANG;

MAOZ, 2020; HE et al., 2021). Consequently, we exclusively consider these techniques

for our analysis. Each data augmentation method is visually represented in Figure 3.3

and further described in detail over the following sections.



3.3 Data Augmentation Methods 33

3.3.1 Sliding Window

Sliding Window generates new training samples by shifting an input window across trials

by a random number of timesteps, essentially translating and cropping the EEG signals.

For instance, if the classification model takes 2 seconds of motor imagery signals as in-

put and each trial contains 3 seconds of motor imagery, we can create multiple samples

by cropping 2-second windows at various positions. This approach serves two purposes:

mitigating overfitting to specific temporal locations of features and maximizing data uti-

lization when the input window size is smaller than the motor imagery period in each

trial.

The generation of an artificial trial Z̃(i) ∈ RE×T , where E is the number of

electrodes and T is the number of timesteps in the input window, can be expressed as

Z̃(i) = Z
(i)
1...E,t...t+T (3.1)

where Z(i) ∈ RE×T is the ith trial of the original dataset and t ∈ {tmin, . . . , tmax} is the

randomly selected initial timestep of the shifted input window.

3.3.2 Segmentation and Recombination

Segmentation and Recombination works by splitting original trials into several segments

and then mixing segments from different trials of the same class. This process is done

in the time-frequency domain to avoid introducing noise between concatenated segments

from different trials (LOTTE, 2015). The method operates in three steps:

1. First, each trial is transformed into its time-frequency representation through the

application of a short-time Fourier transform (STFT), as in TF (i) = STFT(Z(i)). We

define Z(i) ∈ RE×T as the ith trial of the original dataset and TF (i) ∈ CE×M×N as its

time-frequency representation, where E is the number of electrodes, T is the number

of timesteps in the trial, M is the number of frequency bins in the Fourier spectrum,

and N is the number of time windows of the time-frequency representation.

2. Then, windows from different trials of the same class are randomly permuted to
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create a new time-frequency representation:

T̃F
(i)

= [TF
(P1)
1 , TF

(P2)
2 , . . . , TF (Pn)

n ] (3.2)

where T̃F
(i) ∈ CE×M×N is the artificial time-frequency representation and TF (Pi)

n ∈

CE×M is the nth time window of the time-frequency representation of the original

trial Pi.

3. Finally, an inverse short-time Fourier transform (ISTFT) is applied to the concate-

nated windows, generating an artificial trial Z̃(i) ∈ RE×T , as in Z̃(i) = ISTFT(T̃F
(i)

).

3.3.3 Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a signal processing and analysis technique that

can decompose nonlinear and non-stationary signals into a finite set of intrinsic mode

functions (IMF) (HUANG et al., 1998). More precisely, the method decomposes an

arbitrary signal X ∈ RL, where L is the length of the signal, into a set of IMFs C = {ci ∈

RL | i ∈ 1 . . . n} and a final residue rn ∈ RL such that the signal can be recovered through

X =
∑n

i=1 ci + rn.

Based on this relation, the use of EMD as a data augmentation method was pro-

posed in (DINARÈS-FERRAN et al., 2018). The method works by randomly permuting

and summing IMFs from different trials of the same class. First, the IMFs of each chan-

nel of each trial of the original dataset are calculated. Then, a new trial Z̃(i) ∈ RE×T is

generated:

Z̃(i) =
N∑
j=1

C
(Pj)
j + R(i)

n (3.3)

where C
(Pj)
j ∈ RE×T denotes the jth IMFs (for every electrode) of the trial Pj, R

(i)
n ∈ RE×T

denotes the residues (for every electrode) of the ith trial of the original dataset, and N is

the maximum number of IMFs of a signal in the dataset. Importantly, the signals do not

all yield the same number of IMFs, as it varies according to their characteristics. Thus,

we set the jth IMF cj of a signal to zero when it is undefined.
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3.3.4 Noise Addition

Noise Addition produces new training samples by perturbing the raw signals of the original

trials with Gaussian noise. The idea behind this method is that the classifier should be

invariant to small deviations in the signal. The generation of an artificial trial Z̃(i) ∈ RE×T

can be expressed as

Z̃(i) = Z(i) + P (3.4)

where Z(i) ∈ RE×T is the ith trial of the original dataset and P ∈ RE×T is the perturbation

drawn from a normal distribution P ∼ N (µ, σ2).

3.3.5 Amplitude Perturbation

Amplitude Perturbation is similar to Noise Addition but instead adds Gaussian noise to

the amplitudes of the signals in the time-frequency domain. The method works as follows:

1. First, each trial is transformed into its time-frequency domain TF (i) ∈ CE×M×N

using an STFT, as in TF (i) = STFT(Z(i)).

2. Further, we extract the amplitude and the phase of the complex numbers in TF (i)

into A(i) ∈ RE×M×N and Φ(i) ∈ RE×M×N , respectively.

3. Then, we perturb the amplitudes of the signal with Gaussian noise:

Ã(i) = A(i) + P (3.5)

where Ã(i) ∈ RE×M×N is the perturbed amplitude matrix, and P ∈ RE×M×N is the

perturbation drawn from a normal distribution P ∼ N (µ, σ2).

4. Next, the perturbed complex time-frequency representation T̃F
(i) ∈ CE×M×N is

recovered by applying ã(cosϕ + j sinϕ) to each element of the matrix, where ã is

the corresponding amplitude in Ã(i), ϕ is the corresponding phase in Φ(i), and j is

the imaginary unit.

5. Finally, a new artificial trial Z̃(i) ∈ RE×T is generated using an ISTFT, as in Z̃(i) =

ISTFT(T̃F
(i)

).



36

4 Experiments and Results

This chapter details the experiments, the results, and the analyses involved in our in-

vestigation of the effects of data augmentation in motor imagery classification. It begins

by presenting the overall experimental setup, including the model configuration, the data

augmentation settings, and the evaluated test scenarios. The chapter then presents the

results of our experiments, reporting the classification accuracy for each of the test sce-

narios. Additional results are reported in the supplementary material5. Moving forward,

the chapter delves into the analysis of the results, which includes an examination the

achieved accuracies, statistical tests, and an inspection of data distribution effects. Lastly,

the chapter concludes by discussing the main findings, as well as acknowledging potential

limitations of the study and highlighting opportunities for future research.

4.1 Experimental Setup

4.1.1 Overview

We evaluated the performance of the five data augmentation methods described in Chap-

ter 3 on the BCIC-IV 2a and 2b datasets and compared them against a baseline (no data

augmentation). We tested the effects of data augmentation on classification accuracy

in two scenarios: within-session (using data from a single recording session at a time)

and cross-session (using data from multiple sessions). In each scenario, we explored four

settings to analyze the behavior of data augmentation with respect to input and output

dimensionality: BCIC-IV 2a dataset with (i) 22 electrodes and 4 classes; (ii) 3 electrodes

and 4 classes; (iii) 22 electrodes and 2 classes; and BCIC-IV 2b dataset with (iv) 3 elec-

trodes and 2 classes. For setting (ii), we considered the C3, Cz, and C4 electrodes—the

same used in the BCIC-IV 2b dataset. For the same reason, we adopted left and right

hand motor imagery tasks in setting (iii). In addition, after preliminary experiments, we

evaluated the combination of the two best-performing data augmentation methods to ver-

5https://github.com/gbrlfaria/bci-data-augmentation.
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ify whether it could further improve classification performance. Specifically, we combine

Sliding Window and Segmentation and Recombination into SW+SR.

We used blockwise stratified 4-fold cross-validation, as done in (LAWHERN et

al., 2018). At each iteration, we divided the dataset into two training folds, one validation

fold, and one test fold. Next, the model was trained using the two training folds and the

best weights were selected according to the lowest loss on the validation fold. Finally, the

accuracy of the selected model was evaluated on the test fold. During training, we used

a batch size of 32, whereas the number of training epochs varied across scenarios.

We adopted the on-the-fly data augmentation strategy, which performs the fol-

lowing procedure before every epoch: (i) a portion of the original training samples is

selected for augmentation, where each sample has a 50% chance of being selected; (ii) a

data augmentation method is applied to the selected samples, generating new artificial

samples of the same classes as the original ones; and (iii) the initially selected samples are

replaced with the newly generated ones. The modified training dataset is then fed into

the neural network. We chose this strategy as it can generate a large number of artificial

samples while keeping a balance with the original data.

All experiments were performed on an Nvidia Tesla T4 GPU. The neural network

was implemented5 using Pytorch and the data were acquired and preprocessed using the

MOABB (JAYARAM; BARACHANT, 2018), MNE (GRAMFORT et al., 2013), and

Braindecode (SCHIRRMEISTER et al., 2017) libraries.

4.1.2 Test Scenarios

In the within-session scenario, we trained and tested the classifiers by applying cross-

validation to each session of each subject separately. The main goal was to evaluate how

much data augmentation can shorten the calibration time in a scenario where a subject

is using a BCI for the first time. Thus, we simulated multiple situations using different

quantities of original data to train the classifier.

For each cross-validation iteration on the BCIC-IV 2a dataset, we limited the

amount of data in the training folds to 6, 12, 18, 24, 30, and 36 samples per class and

the amount of data in the validation fold to 3, 6, 9, 12, 15, and 18 samples per class,
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Table 4.1: Summary of the EEGNet configurations used.

Dataset # Timesteps # Electrodes # Classes # Parameters

BCIC-IV 2a
256 (2 s) 22 4 1,716
256 (2 s) 3 4 1,412
256 (2 s) 22 2 1,458

BCIC-IV 2b 256 (2 s) 3 2 1,154

respectively.

For the BCIC-IV 2b dataset, we limited the training data of each cross-validation

iteration to 6, 12, 18, 24, and 30 samples per class and the validation data to 3, 6, 9, 12,

and 15 samples per class, respectively. In this scenario, we set the number of epochs to

1000, as there were fewer batches per epoch.

In the cross-session scenario, we trained and tested the classifier by applying

cross-validation to data from all sessions of each subject. Unlike in the previous scenario,

we were primarily interested in evaluating how further data augmentation can improve

classification performance when given larger quantities of data from multiple sessions.

Here, we set the number of training epochs to 500, following the same experimental

design adopted by (LAWHERN et al., 2018).

4.1.3 Data Preprocessing

For both datasets, we adopt the same procedure as in (LAWHERN et al., 2018). First,

we resample the signal at 128 Hz and bandpass-filter it between 4 Hz and 40 Hz. Next,

the resulting data are standardized using an electrode-wise exponential moving average.

Finally, we crop the trial into a two-second window, from 0.5 s to 2.5 s after the cue onset.

4.1.4 Model Hyperparameters

We set the architecture hyperparameters of EEGNet to F1 = 8, F2 = 16, and D = 2, with

a dropout probability of p = 0.5, which are the same used by the original configuration

of EEGNet-8,2 (LAWHERN et al., 2018). We made this choice since our datasets and

preprocessing are identical or similar to those used in (LAWHERN et al., 2018). Compared

with the original architecture, we only change the number of input electrodes E and the
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number of output classes N across our experiments, when necessary. Table 4.1 shows the

number of parameters of each EEGNet configuration used in our experiments. As defined

in (LAWHERN et al., 2018), we train the CNN with the categorical cross-entropy loss

function, using the Adam optimizer with its default parameters (KINGMA; BA, 2017)

and learning rate η = 0.001.

4.1.5 Data Augmentation Parameters

We now detail the parameters used for each data augmentation method.

Sliding Window

We set tmin and tmax so that the leftmost window begins at the cue onset while the

rightmost window ends 4 s after the cue onset, which coincides with the end of the motor

imagery period in most of the trials.

Segmentation and Recombination

We adopt the same setup used in (LOTTE, 2015). That is, we use a Hamming window

of 250 ms with a 50% overlap for STFT and re-divide the time-frequency representation

into eight segments before the recombination in Equation (3.2).

Empirical Mode Decomposition

No trial exhibited more than 8 IMFs. There are no other parameters in this method.

Noise Addition

We use µ = 0 and σ = 0.1, as those parameters led to the best results in (LASHGARI et

al., 2021) when using the same datasets adopted in the present work.

Amplitude Perturbation

As in (LI et al., 2019), we used the Hanning window for STFT. However, as the other

parameters of STFT were not specified in (LI et al., 2019), we applied a 250 ms window

with a 50% overlap. Also, we did not use the noise parameters presented in (LI et al.,
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Figure 4.1: Mean test accuracy for within-session motor imagery classification with respect
to the number of original training samples per class, averaged over subjects, sessions, and
folds. SW is Sliding Window, NA is Noise Addition, AP is Amplitude Perturbation, SR is
Segmentation and Recombination, EMD is Empirical Mode Decomposition, and Baseline
is the reference experiment without data augmentation.

2019) as the standard deviation of the noise was smaller than 1% of the standard deviation

of the amplitudes observed in our data, leading to unnoticeable effects. Instead, similarly

to Noise Addition, we use µ = 0 and σ = 0.015, which is about 10% of the standard

deviation of the amplitudes.

4.2 Results

4.2.1 Classification Accuracy

Figure 4.1 shows the mean classification accuracy with respect to the number of original

training samples in the within-session scenario. The proposed combination SW+SR per-
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Table 4.2: Mean test accuracies (± standard deviation) for cross-session motor imagery
classification.

Dataset BCIC-IV 2a BCIC-IV 2b

Method (22 electrodes, 4 classes) (3 electrodes, 4 classes) (22 electrodes, 2 classes) (3 electrodes, 2 classes)

Baseline 0.696 ± 0.146 0.566 ± 0.113 0.798 ± 0.153 0.762 ± 0.142
SW 0.708 ± 0.148 0.574 ± 0.117 0.797 ± 0.153 0.764 ± 0.142
NA 0.688 ± 0.150 0.562 ± 0.116 0.791 ± 0.160 0.761 ± 0.144
AP 0.690 ± 0.149 0.565 ± 0.118 0.794 ± 0.153 0.760 ± 0.145
SR 0.705 ± 0.152 0.573 ± 0.119 0.808 ± 0.153 0.749 ± 0.152
EMD 0.640 ± 0.159 0.548 ± 0.130 0.749 ± 0.163 0.740 ± 0.153
SW+SR 0.706 ± 0.150 0.570 ± 0.115 0.801 ± 0.168 0.749 ± 0.149

formed better than every other method in all cases except for the BCIC-IV 2b dataset,

in which Sliding Window took the lead. Nonetheless, SW+SR and Sliding Window both

outperformed the baseline. Meanwhile, Segmentation and Recombination improved the

mean accuracy in 18 out of 23 cases, whereas Noise Addition and Amplitude Perturbation

did not lead to noticeable improvements and decreased accuracy in some cases. Finally,

EMD performed poorly and often reduced accuracy.

Regarding the amount of original data, the Sliding Window and SW+SR methods

achieved higher classification accuracy with 33% fewer data in almost one-third of the

experiments and at least 25% fewer data in almost half of them. Particularly, SW+SR

increased the mean accuracy from 69.7% to 76.2% on the BCIC-IV 2a dataset (2 classes

and 22 electrodes), surpassing the top baseline result while using 24 fewer training trials

and 12 fewer validation trials. Similar results can be observed for Sliding Window. We

highlight that the classifier reached a mean accuracy of 82.64% (the baseline reached

54.51%) with 24 training samples per class on subject 7, and that it reached a mean

accuracy of 78.82% (the baseline reached 63.54%) with 6 training samples per class on

subject 3, both using SW+SR on the BCIC-IV 2a dataset with 22 electrodes and two

classes.

Table 4.2 shows the mean test accuracies and the standard deviations for each

augmentation method in the cross-session scenario. Sliding Window, the best method

overall, failed to increase classification accuracy on the BCIC-IV 2a dataset with 22 elec-

trodes and 2 classes. Similarly, Segmentation and Recombination and SW+SR failed on

the BCIC-IV 2b dataset. Moreover, SW+SR did not obtain the highest accuracy in any

case in this scenario. Meanwhile, Noise Addition, Amplitude Perturbation, and EMD
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Figure 4.2: Performance profiles of the mean test accuracy as,p (over sessions and folds)
over every test-problem p.

reduced accuracy in all cases, where EMD was the worst-performing method.

4.3 Analysis

4.3.1 Performance Profiles

We further inspect the results using performance profiles (DOLAN; MORÉ, 2002), which

provide a single overview of the performance of the methods across all test scenarios.

Here, we interpret each tuple (dataset, number of electrodes, number of classes, subject,

number of training samples) as a test-problem p ∈ P and each classifier (corresponding

to each augmentation method, in addition to the baseline) as a solver s ∈ S. Then, we

define the performance as,p as the mean accuracy of the solver s on the test-problem p.

Essentially, each performance profile is the cumulative distribution function (CDF) of the

ratio rs,p =
max{as′,p | s′∈S}

as,p
for every solver s and every test-problem p, where rs,p is the

ratio between the best accuracy for p and the accuracy of the solver s on p. This gives us:

(i) the approach that obtained the best result the most times (largest P (rs,p ≤ 1)), (ii)

the most reliable approach (smallest τ such that P (rs,p ≤ τ) = 1), and (iii) the approach

with the best overall performance (largest area under the curve).

The performance profiles are shown in Figure 4.2. The best-performing method

overall is SW+SR, followed by Sliding Window. SW+SR is also most frequently the best,

reaching top accuracy in 45.7% of the test-problems. Additionally, the baseline had the



4.3 Analysis 43

Table 4.3: Results (p-values) of the Dunn’s test.

Baseline SW NA AP SR EMD

SW 10−20

NA 100 10−24

AP 100 10−20 100

SR 10−3 10−7 10−5 10−3

EMD 10−3 10−39 10−2 10−3 10−13

SW+SR 10−32 10−1 10−37 10−33 10−16 10−56

* Statistically significant values (p < 0.05) are boldfaced.

best accuracy in 6.6% of the cases. Moreover, the most reliable method is Sliding Window

(CDF(1.19) = 1), followed by SW+SR (CDF(1.28) = 1).

4.3.2 Statistical Significance

We analyzed the statistical significance of the results shown in the performance profiles.

First, we applied the Kruskal-Wallis one-way analysis of variance to the rs,p values and

rejected the null hypothesis at a significance level of α = 0.05 (p = 1.39× 10−86). Then,

we used Dunn’s test to calculate pairwise p-values between different augmentation ap-

proaches. We adjusted the obtained p-values using the Bonferroni correction method.

The results are summarized in Table 4.3. We can see that the performance profile curves

of all augmentation methods differ significantly from the baseline, except for Noise Addi-

tion and Amplitude Perturbation. However, the difference between the Sliding Window

and SW+SR curves, despite visible, is not statistically significant. Still, the results indi-

cate that Sliding Window and SW+SR are significantly better than the other methods.

4.3.3 Data Distribution

We now analyze how the distribution of the data changes as we apply data augmen-

tation. To that end, we first visualize the covariance matrices of the EEG signals with

t-SNE (MAATEN; HINTON, 2008) using the Riemannian distance, similarly to (ZANINI

et al., 2018). Essentially, this visualization technique projects the data into a low-

dimensional representation such that similar samples are close together while dissimilar

samples are far apart.
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Figure 4.3: Two-dimensional t-SNE projections of the covariance matrices of the signals
from subject 1 of dataset BCIC-IV 2a.

Figure 4.3 shows the t-SNE projections of the data generated by each data aug-

mentation method for subject 1 of dataset BCIC-IV 2a, in addition to the baseline. We

can see that the Sliding Window data distribution is similar to the original one. Also, the

data generated by Noise Addition and EMD data are visibly different from the baseline,

as both are collapsed and centered away from the original distribution. Meanwhile, the

Amplitude Perturbation data are projected close to the original data, but have a visibly

different clustering. Segmentation and Recombination and SW+SR data points are both

clustered within the region occupied by the original data.

Similar patterns can be observed for other subjects in dataset BCIC-IV 2a and

non-preprocessed signals. However, when using only the C3, Cz, and C4 electrodes, which

is the case for dataset BCIC-IV 2b, the pattern observed for SW+SR and Segmentation

and Recombination is not visible. Similarly, the centroid shift observed for Noise Addition

is not visible, although EMD is still visibly different from the baseline. These additional

visualizations are available in the supplementary material.

Additionally, in order to visualize the frequency distribution of the artificial sig-

nals, we calculate the the mean power spectral density (PSD) of the EEG signals from
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Figure 4.4: Mean power spectral density of the C3, Cz, and C4 electrodes for left and
right-hand motor imagery signals from subject 1 of the BCIC-IV 2a dataset.

subject 1 of the BCIC-IV 2a dataset using Welch’s method, as shown in Figure 4.4.

We can see that Sliding Window has the closest distribution to the baseline. All other

methods deviate from the baseline over high frequencies (> 40 Hz) and low frequen-

cies (< 2 Hz). Noise Addition and Amplitude Perturbation have the highest deviations

over high frequencies and the lowest deviations over low frequencies, apart from Sliding

Window. Meanwhile, the remaining methods follow the baseline more closely over high

frequencies, but have a relatively higher deviation over low frequencies. Interestingly,

EMD has a frequency distribution similar to the baseline over high frequencies. Again,

similar patterns are observed for other subjects and datasets.

4.4 Discussion

The results indicate that data augmentation can increase accuracy and reduce the amount

of data needed for calibration, with the top-performing methods achieving greater accu-

racy with fewer training data compared with the baseline in the within-session scenario.

Specifically, the performance profiles analysis suggests that SW+SR and Sliding Window

are the best methods overall, where the latter is the most reliable.

According to the data distribution analyisis, Sliding Window is the data augmen-
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tation method that generates the data that most closely resembles the original data. As

expected, this is because this method generates samples by simply sliding a window over

the original signals without modifying them. Because of this, Sliding Window not only

is reliable, but also makes better use of the available training data. The downside is that

this method only yields valid motor imagery signals at all times when the motor imagery

period of each trial is larger than the input window.

On the other hand, the Segmentation and Recombination method yielded rela-

tively modest results and generated samples that moderately deviate from the original

data. Yet, this method still outperforms the baseline and can be applied regardless of

the input window size. When combined with Sliding Window, it further enhances perfor-

mance, leading to the best overall results on average.

Meanwhile, Noise Addition and Amplitude Perturbation performed similarly to

the baseline and, in fact, reduced accuracy in several cases. Notably, both methods

introduce high-frequency noise which is not present in the original filtered signals. At the

same time, EMD performed poorly in all experiments. Although the reasons for this result

are unclear, it is worth noting that the data generated by EMD were visibly different from

the original data according to the data distribution analysis.

In the cross-session scenario, however, data augmentation was shown to be less

effective. This could be attributed to diminishing returns resulting from the larger amount

of original training data. Additionally, the inclusion of data from multiple sessions might

have adversely impacted combination-based methods due to signal variations over time,

which could explain the results observed on the BCIC-IV 2b dataset.

Overall, the results demonstrate that data augmentation can reduce the need for

training data and increase accuracy in few-parameter CNN-based motor imagery BCIs,

mainly when few original data points are available. This is relevant for motor imagery

BCI applications in general, but especially for those such as neurorehabilitation, in which

decreasing calibration times and increasing feedback accuracy directly lead to better treat-

ment quality for patients.

However, there are limitations to the present study and further investigation

is necessary in to understand and explain the impact of data augmentation on motor



4.4 Discussion 47

imagery EEG classification. Future research should delve deeper into the qualitative dif-

ferences between artificial and real motor imagery EEG signals. Furthermore, it is worth

exploring alternative data augmentation methods, including variations of the ones already

analyzed in this work, as well as investigating different datasets and neural network archi-

tectures. One notable candidate for further exploration are modern sequence processing

architectures such as deep state-space models (GU et al., 2021; GU; GOEL; RÉ, 2022;

SMITH; WARRINGTON; LINDERMAN, 2023). Another worthwhile avenue is to assess

how data augmentation compares to and complements other techniques for reducing cal-

ibration times in neural network-based BCIs, such as transfer learning and unsupervised

learning.
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5 Conclusion

In this work, we have addressed the problem of lengthy calibration times in motor imagery-

based brain-computer interfaces, a key challenge in many different applications. To this

end, we investigated the extent to which data augmentation techniques can reduce cali-

bration times while increasing decoding accuracy. Specifically, we analyzed five data aug-

mentation methods previously reported in the literature in multiple scenarios, utilizing a

few-parameter CNN on two distinct motor imagery datasets. In our analyses, we showed

that data augmentation can significantly improve accuracy and reduce the amount of data

needed for training, although the improvements were modest in the cross-session scenario,

in which more data were available. Moreover, we combined the two best-performing data

augmentation methods, Sliding Window and Segmentation and Recombination, into the

SW+SR method. The results obtained showed that SW+SR yielded the best results

overall, whereas Sliding Window was the most reliable method—and that both methods

led to significantly larger classification accuracies in most experiments compared to other

approaches. Future work may qualitatively investigate the impact of data augmentation

on motor imagery EEG classification as well as explore alternative augmentation methods,

datasets, and neural network architectures
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GÉRON, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd. ed. [S.l.]: O’Reilly
Media, Inc., 2019.

GRAIMANN, B.; ALLISON, B.; PFURTSCHELLER, G. Brain–computer interfaces:
A gentle introduction. In: . Brain-Computer Interfaces: Revolutionizing Human-
Computer Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 1–27.
ISBN 978-3-642-02091-9.

GRAMFORT, A.; LUESSI, M.; LARSON, E.; ENGEMANN, D. A.; STROHMEIER, D.;
BRODBECK, C.; GOJ, R.; JAS, M.; BROOKS, T.; PARKKONEN, L.; HÄMÄLÄINEN,
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